Durability Assessment of Sustainable Mortar by Incorporating the Combination of Solid Wastes: An Experimental Study

Mohammad Nadeem Akhtar, Dima A. Husein Malkawi, Khaldoon A. Bani-Hani, Abdallah I. Husein Malkawi


The excessive mining of high-quality river sand for cement sand mortar resulted in environmental impacts and ecological imbalances. The present study aims to produce sustainable mortar by combining solid waste such as desert sand, stone dust, and crumb rubber to fully replace river sand. In addition, replacing cement with silica fume helps reduce the environmental carbon footprint. The present research prepared three types of mortar mixes: natural dune sand mortar (M1), natural dune sand stone dust crumb rubber mortar (M2), and natural dune sand stone dust crumb rubber silica fume mortar (M3). The developed mortar samples were examined at ambient and elevated temperatures of 100°C, 200°C, and 300°C for 120 minutes. Furthermore, 3 cycles of 12 hours each at freezing temperature (-10° ± 2°C) and crushed ice cooling (0° to -5°C) were also tested. Results of the study showed an increment in compressive strength values in M1, M2, and M3 mortar mixes (up to 200°C). Later, an abrupt drop in the compressive strength was noticed at 300°C in all mixes M1, M2, and M3, respectively. The mix M3 combinations resist heating impacts and perform significantly better than other mixes M1 and M2. Also, M3 combinations resist the cooling effect better than M1 and M2. It can be concluded that the mortar mix M3 with desert sand, stone dust, crumb rubber, and silica fume combination is considered the best mix for both heating and cooling resistance. Hence, the developed sustainable mortar M3 combination can be utilized in all adverse weather conditions.


Doi: 10.28991/CEJ-2023-09-11-09

Full Text: PDF


Desert Sand; Stone Dust; Crumb Rubber; Silica Fume; Sustainable Mortar.


Bendixen, M., Best, J., Hackney, C., & Iversen, L. L. (2019). Time is running out for sand. Nature, 571(7763), 29–31. doi:10.1038/d41586-019-02042-4.

Best, J. (2019). Anthropogenic stresses on the world’s big rivers. Nature Geoscience, 12(1), 7–21. doi:10.1038/s41561-018-0262-x.

Torres, A., Brandt, J., Lear, K., & Liu, J. (2017). A looming tragedy of the sand commons. Science, 357(6355), 970–971. doi:10.1126/science.aao0503.

Koehnken, L., & Rintoul, M. (2018). Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International, Vaud, Switzerland.

Seif, E. S. S. A., & Sedek, E. S. (2013). Performance of cement mortar made with fine aggregates of dune sand, Kharga Oasis, Western Desert, Egypt: an experimental study. Jordan Journal of Civil Engineering, 7(3), 270-284.

Abu Seif, E. S. S., Sonbul, A. R., Hakami, B. A. H., & El-Sawy, E. K. (2016). Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(3), 1007–1022. doi:10.1007/s10064-016-0855-9.

Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.

Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2023). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 102331. doi:10.1016/j.asej.2023.102331.

Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.

Akhtar, M. N., Al-Shamrani, A. M., Jameel, M., Khan, N. A., Ibrahim, Z., & Akhtar, J. N. (2021). Stability and permeability characteristics of porous asphalt pavement: An experimental case study. Case Studies in Construction Materials, 15, 591. doi:10.1016/j.cscm.2021.e00591.

Akhtar, M., Halahla, A., & Almasri, A. (2021). Experimental study on compressive strength of recycled aggregate concrete under high temperature. SDHM Structural Durability and Health Monitoring, 15(4), 335–348. doi:10.32604/sdhm.2021.015988.

Nadeem Akhtar, M., & Tarannum, N. (2019). Flyash as a Resource Material in Construction Industry: A Clean Approach to Environment Management. Sustainable Construction and Building Materials, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.82078.

de Andrade Salgado, F., & de Andrade Silva, F. (2022). Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. Journal of Building Engineering, 52, 104452. doi:10.1016/j.jobe.2022.104452.

Nisar Akhtar, J., Ahmad Khan, R., Ahmad Khan, R., Nadeem Akhtar, M., & Thomas, B. S. (2023). A comparative study of strength and durability characteristics of concrete and mortar admixture by bacterial calcite precipitation: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.490.

Akhtar, M. N., & Akhtar, J. N. (2018). Suitability of Class F Flyash for Construction Industry: An Indian Scenario. International Journal of Structural and Construction Engineering, 12(9), 892–897.

Jagadeep, R., Vignesh, R. V., Sumanth, P., Sarathi, V., & Govindaraju, M. (2021). Fabrication of fly-ash based tiles using liquid phase sintering technology. Materials Today: Proceedings, 46, 7224-7229. doi:10.1016/j.matpr.2020.12.348.

Akhtar, M. N., Bani-Hani, K. A., Akhtar, J. N., Khan, R. A., Nejem, J. K., & Zaidi, K. (2022). Flyash-based bricks: an environmental savior—a critical review. Journal of Material Cycles and Waste Management, 24(5), 1663–1678. doi:10.1007/s10163-022-01436-3.

Ahmad, S., Baghabra Al-Amoudi, O. S., Khan, S. M. S., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, 1255. doi:10.1016/j.cscm.2022.e01255.

Prasad Bhatta, D., Singla, S., & Garg, R. (2022). Experimental investigation on the effect of Nano-silica on the silica fume-based cement composites. Materials Today: Proceedings, 57, 2338–2343. doi:10.1016/j.matpr.2022.01.190.

Thomas, B. S., Gupta, R. C., Mehra, P., & Kumar, S. (2015). Performance of high strength rubberized concrete in aggressive environment. Construction and Building Materials, 83, 320–326. doi:10.1016/j.conbuildmat.2015.03.012.

Wong, S. F., & Ting, S. K. (2009). Use of recycled rubber tires in normaland high-strength concretes. ACI Materials Journal, 106(4), 325–332. doi:10.14359/56652.

Bani-Hani, K. A., & Senouci, A. (2015). Using waste tire crumb rubber as an alternative aggregate for concrete pedestrian blocks. Jordan Journal of Civil Engineering, 9(3), 400–409. doi:10.14525/jjce.9.3.3080.

Algin, H. M., & Turgut, P. (2008). Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074–1080. doi:10.1016/j.conbuildmat.2007.03.006.

Ahmad Khan, R., Nisar Akhtar, J., Ahmad Khan, R., & Nadeem Akhtar, M. (2023). Experimental study on fine-crushed stone dust a solid waste as a partial replacement of cement. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.222.

Aïtcin, P.C. (1983). Condensed silica fume. Université de Sherbrooke, Sherbrooke, Canada.

ACI 234R-96. (2000). Guide for the use of silica fume in concrete. American Concrete Institute (ACI), Michigan, United States.

Asgeirsson, H., & Gudmundsson, G. (1979). Pozzolanic activity of silica dust. Cement and Concrete Research, 9(2), 249–252. doi:10.1016/0008-8846(79)90031-0.

Saba, A. M., Khan, A. H., Akhtar, M. N., Khan, N. A., Rahimian Koloor, S. S., Petru, M., & Radwan, N. (2021). Strength and flexural behavior of steel fiber and silica fume incorporated self-compacting concrete. Journal of Materials Research and Technology, 12, 1380–1390. doi:10.1016/j.jmrt.2021.03.066.

Akhtar, J. N., Khan, R. A., Khan, R. A., Akhtar, M. N., & Nejem, J. K. (2022). Influence of Natural Zeolite and Mineral additive on Bacterial Self-healing Concrete: A Review. Civil Engineering Journal (Iran), 8(5), 1069–1085. doi:10.28991/CEJ-2022-08-05-015.

Pastore, G., Baird, T., Vermeesch, P., Resentini, A., & Garzanti, E. (2021). Provenance and recycling of Sahara Desert sand. Earth-Science Reviews, 216, 1–19. doi:10.1016/j.earscirev.2021.103606.

Al-Harthi, A. A. (2002). Geohazard assessment of sand dunes between Jeddah and Al-Lith, western Saudi Arabia. Environmental Geology, 42(4), 360–369. doi:10.1007/s00254-001-0501-z.

ASTM C1240-20. (2020). Standard Specification Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/C1240-20.

BS 3148. (1980) Methods of Test for Water for Making Concrete. British Standard Institution (BSI), London, United Kingdom.

ASTM C128-22. (2023). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.

GSO 1914/2009. (2009). Properties of Ordinary Portland Cement Type 1. GCC Standardization Organization, Riyadh, Kingdom of Saudi Arabia.

ASTM C136-06. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136-06.

ASTM C1437-20. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar: C1437-01. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-20.

IS 5512. (1983). Specification for flow table for use in tests of hydraulic cements and pozzolanic materials. Bureau of Indian Standards, New Delhi, India.

Suman, B. K., Singh, A. K., & Srivastava, V. (2016). Stone Dust as Fine Aggregate Replacement in Concrete: Effect on Compressive Strength. International Journal of Advances in Engineering and Emerging Technology, 7(4), 3–8.

Israr, M. B., Shahzada, K., & Khan, S. W. (2016). Impact of Waste Marble Dust on the Sustainability of Cement Sand Mortar. National Institute of Urban Infrastructure and Planning, University of Engineering and Technology, Peshawar 3rd Conference on Sustainability in Process Industry (SPI-2016), 19-20 October, 2016, Peshawar, Pakistan.

Lohani, T., Padhi, M., Dash, K., & Jena, S. (2012). Optimum utilization of quarry dust as partial replacement of sand in concrete. International Journal of Applied Science and Engineering Research, 1(2), 391–404. doi:10.6088/ijaser.0020101040.

Kankam, C. K., Meisuh, B. K., Sossou, G., & Buabin, T. K. (2017). Stress-strain characteristics of concrete containing quarry rock dust as partial replacement of sand. Case Studies in Construction Materials, 7, 66–72. doi:10.1016/j.cscm.2017.06.004.

ASTM C39/C39M-01. (2017). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-01.

Neville, A. M. (1995). Properties of concrete (Vol. 4). Longman, London, United Kingdom.

Park, S., Lee, B., Kim, J., & Yun, D. (2002). Planting-Ability Valuation of Porous Concrete Using Industrial By-Products. Journal of the Korea Concrete Institute, 14(4), 623–629. doi:10.4334/jkci.2002.14.4.623.

Lee, K. H., & Yang, K. H. (2016). Development of a neutral cementitious material to promote vegetation concrete. Construction and Building Materials, 127, 442–449. doi:10.1016/j.conbuildmat.2016.10.032.

Li, S., Yin, J., & Zhang, G. (2020). Experimental investigation on optimization of vegetation performance of porous sea sand concrete mixtures by pH adjustment. Construction and Building Materials, 249, 118775. doi:10.1016/j.conbuildmat.2020.118775.

Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27(1), 1–9. doi:10.24200/sci.2018.20334.

Dehdezi, P. K., Erdem, S., & Blankson, M. A. (2015). Physico-mechanical, microstructural and dynamic properties of newly developed artificial fly ash based lightweight aggregate - Rubber concrete composite. Composites Part B: Engineering, 79, 451–455. doi:10.1016/j.compositesb.2015.05.005.

ASTM C270-19ae1. (2019). Standard Specification for Mortar for Unit Masonry. ASTM International, Pennsylvania, United States. doi:10.1520/C0270-19AE01.

ASTM C1329-03. (2017). Standard Specification for Mortar Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C1329-03.

Khoury, G. A., Anderberg, Y., Both, K., Fellinger, J., Høj, N., & Majorana, C. (2007). Fib bulletin 38: Fire design of concrete structures—materials, structures and modelling, state-of-the art report. Federation Internationale du Beton, Lausanne, Switzerland.

Khoury, G. A. (1992). Compressive strength of concrete at high temperatures: A reassessment. Magazine of Concrete Research, 44(161), 291–309. doi:10.1680/macr.1992.44.161.291.

Fadiel. (2014). Use of Crumb Rubber To Improve Thermal Efficiency of Cement-Based Materials. American Journal of Engineering and Applied Sciences, 7(1), 1–11. doi:10.3844/ajeassp.2014.1.11.

Tang, Y., Feng, W., Feng, W., Chen, J., Bao, D., & Li, L. (2021). Compressive properties of rubber-modified recycled aggregate concrete subjected to elevated temperatures. Construction and Building Materials, 268, 121181. doi:10.1016/j.conbuildmat.2020.121181.

Salahuddin, H., Nawaz, A., Maqsoom, A., Mehmood, T., & Zeeshan, B. Ul A. (2019). Effects of elevated temperature on performance of recycled coarse aggregate concrete. Construction and Building Materials, 202, 415–425. doi:10.1016/j.conbuildmat.2019.01.011.

Pathak, N., & Siddique, R. (2012). Effects of elevated temperatures on properties of self-compacting-concrete containing fly ash and spent foundry sand. Construction and Building Materials, 34, 512–521. doi:10.1016/j.conbuildmat.2012.02.026.

Fares, H., Noumowe, A., & Remond, S. (2009). Self-consolidating concrete subjected to high temperature. Mechanical and physicochemical properties. Cement and Concrete Research, 39(12), 1230–1238. doi:10.1016/j.cemconres.2009.08.001.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-09


  • There are currently no refbacks.

Copyright (c) 2023 Mohammad Nadeem Akhtar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.