Climate Forecasting Models for Precise Management Using Extreme Value Theory
Abstract
Doi: 10.28991/CEJ-2023-09-07-014
Full Text: PDF
Keywords
References
Chavez-Demoulin, V., Embrechts, P., & Hofert, M. (2016). An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates. Journal of Risk and Insurance, 83(3), 735–776. doi:10.1111/jori.12059.
Chavez-Demoulin, V., & Guillou, A. (2018). Extreme quantile estimation for β-mixing time series and applications. Insurance: Mathematics and Economics, 83, 59–74. doi:10.1016/j.insmatheco.2018.09.004.
Einmahl, J. J., Einmahl, J. H. J., & de Haan, L. (2019). Limits to Human Life Span Through Extreme Value Theory. Journal of the American Statistical Association, 114(527), 1075–1080. doi:10.1080/01621459.2018.1537912.
Diawara, D., Kane, L., Dembele, S., & Lo, G. S. (2021). Applying of the Extreme Value Theory for determining extreme claims in the automobile insurance sector: Case of a China car insurance. Afrika Statistika, 16(3), 2883–2909. doi:10.16929/as/2021.2883.188.
de Haan, L., Mercadier, C., & Zhou, C. (2016). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance and Stochastics, 20(2), 321–354. doi:10.1007/s00780-015-0287-6.
Gkillas, K., & Katsiampa, P. (2018). An application of extreme value theory to cryptocurrencies. Economics Letters, 164, 109–111. doi:10.1016/j.econlet.2018.01.020.
Drees, H., de Haan, L., & Turkman, F. (2018). Extreme value estimation for discretely sampled continuous processes. Extremes, 21(4), 533–550. doi:10.1007/s10687-018-0313-0.
Tamošaitienė, J., Yousefi, V., & Tabasi, H. (2021). Project portfolio construction using extreme value theory. Sustainability (Switzerland), 13(2), 1–13. doi:10.3390/su13020855.
Opala, N., Fischer, A., & Svoboda, M. (2022). Modeling tail-dependence of crypto assets with extreme value theory: Perspectives of risk management in banks. Risk Governance and Control: Financial Markets and Institutions, 12(4), 67–77. doi:10.22495/rgcv12i4p5.
Embrechts, P., Klüppelberg, C., Mikosch, T. (2023). Modern Extreme Value Theory at the Interface of Risk Management, Bayesian Networks and Heavy-Tailed Time Series. Mathematics Going Forward, Lecture Notes in Mathematics, 2313, Springer, Cham, Switzerland. doi:10.1007/978-3-031-12244-6_10.
Külekci, B. Y., Karabey, U., & Selcuk-Kestel, A. S. (2023). Assessment of dependent risk using extreme value theory in a time-varying framework. Hacettepe Journal of Mathematics and Statistics, 52(1), 248–267. doi:10.15672/hujms.992699.
Yousof, H. M., Tashkandy, Y., Emam, W., Ali, M. M., & Ibrahim, M. (2023). A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data. Mathematics, 11(4), 966. doi:10.3390/math11040966.
Canton Enriquez, D., Niembro-Ceceña, J. A., Muñoz Mandujano, M., Alarcon, D., Arcadia Guerrero, J., Gonzalez Garcia, I., Montes Gutierrez, A. A., & Gutierrez-Lopez, A. (2022). Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset. Data in Brief, 40, 107783. doi:10.1016/j.dib.2021.107783.
Chutiman, N., Guayjarernpanishk, P., Chiangpradit, M., Busababodhin, P., Rattanawan, S., Phoophiwfa, T., & Kong-ied, B. (2022). The Risk Area Assessment on Re-emerging Diseases in Elderly People by Using Extreme Value Theory. International Journal of Mathematics and Computer Science, 17(1), 243–253.
Einmahl, J. H. J., Li, J., & Liu, R. Y. (2015). Bridging centrality and extremity: Refining empirical data depth using extreme value statistics. Annals of Statistics, 43(6), 2738–2765. doi:10.1214/15-AOS1359.
Vignotto, E., & Engelke, S. (2020). Extreme value theory for anomaly detection – the GPD classifier. Extremes, 23(4), 501–520. doi:10.1007/s10687-020-00393-0.
Croitoru, A. E., & Piticar, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33(8), 1987–2001. doi:10.1002/joc.3567.
Olmo, M., Bettolli, M. L., & Rusticucci, M. (2020). Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America. Weather and Climate Extremes, 29. doi:10.1016/j.wace.2020.100267.
Tošić, I., Putniković, S., Tošić, M., & Lazić, I. (2021). Extreme temperature events in serbia in relation to atmospheric circulation. Atmosphere, 12(12), 1584. doi:10.3390/atmos12121584.
Busababodhin, P., Chiangpradit, M., Papukdee, N., Ruechairam, J., Ruanthaisong, K., & Guayjarernpanishk, P. (2021). Extreme Value Modeling of Daily Maximum Temperature with the r-Largest Order Statistics. The Journal of Applied Science, 20(1), 28–38. doi:10.14416/j.appsci.2021.01.003.
Gong, X., Wang, X., Li, Y., Ma, L., Li, M., & Si, H. (2022). Observed Changes in Extreme Temperature and Precipitation Indices on the Qinghai-Tibet Plateau, 1960–2016. Frontiers in Environmental Science, 10, 888937. doi:10.3389/fenvs.2022.888937.
Chiangpradit, M., Busababodhin, P., Chutiman, N., Guayjarernpanishk, P., & Kong-ied, B. (2022). Probability Analysis for Maximum Temperature in Northeast of Thailand. International Journal of Mathematics and Computer Science, 17(2), 589–599.
Coles, S., & Nadaraja, S. (2001). An Introduction to statistical modeling of extreme values. Springer, London United Kingdom.
Zhang, J. (2002). Powerful Goodness-of-fit Tests Based on the Likelihood Ratio. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2), 281–294. doi:10.1111/1467-9868.00337.
DOI: 10.28991/CEJ-2023-09-07-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Pannarat Guayjarernpanishk, Nipaporn Chutiman, Monchaya Chiangpradit, Butsakorn Kong-ied
This work is licensed under a Creative Commons Attribution 4.0 International License.