Climate Forecasting Models for Precise Management Using Extreme Value Theory

Pannarat Guayjarernpanishk, Monchaya Chiangpradit, Butsakorn Kong-ied, Nipaporn Chutiman

Abstract


The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1–2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention.

 

Doi: 10.28991/CEJ-2023-09-07-014

Full Text: PDF


Keywords


Extreme Value Theory; Generalized Pareto Distribution; Precipitation; Temperature.

References


Chavez-Demoulin, V., Embrechts, P., & Hofert, M. (2016). An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates. Journal of Risk and Insurance, 83(3), 735–776. doi:10.1111/jori.12059.

Chavez-Demoulin, V., & Guillou, A. (2018). Extreme quantile estimation for β-mixing time series and applications. Insurance: Mathematics and Economics, 83, 59–74. doi:10.1016/j.insmatheco.2018.09.004.

Einmahl, J. J., Einmahl, J. H. J., & de Haan, L. (2019). Limits to Human Life Span Through Extreme Value Theory. Journal of the American Statistical Association, 114(527), 1075–1080. doi:10.1080/01621459.2018.1537912.

Diawara, D., Kane, L., Dembele, S., & Lo, G. S. (2021). Applying of the Extreme Value Theory for determining extreme claims in the automobile insurance sector: Case of a China car insurance. Afrika Statistika, 16(3), 2883–2909. doi:10.16929/as/2021.2883.188.

de Haan, L., Mercadier, C., & Zhou, C. (2016). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance and Stochastics, 20(2), 321–354. doi:10.1007/s00780-015-0287-6.

Gkillas, K., & Katsiampa, P. (2018). An application of extreme value theory to cryptocurrencies. Economics Letters, 164, 109–111. doi:10.1016/j.econlet.2018.01.020.

Drees, H., de Haan, L., & Turkman, F. (2018). Extreme value estimation for discretely sampled continuous processes. Extremes, 21(4), 533–550. doi:10.1007/s10687-018-0313-0.

Tamošaitienė, J., Yousefi, V., & Tabasi, H. (2021). Project portfolio construction using extreme value theory. Sustainability (Switzerland), 13(2), 1–13. doi:10.3390/su13020855.

Opala, N., Fischer, A., & Svoboda, M. (2022). Modeling tail-dependence of crypto assets with extreme value theory: Perspectives of risk management in banks. Risk Governance and Control: Financial Markets and Institutions, 12(4), 67–77. doi:10.22495/rgcv12i4p5.

Embrechts, P., Klüppelberg, C., Mikosch, T. (2023). Modern Extreme Value Theory at the Interface of Risk Management, Bayesian Networks and Heavy-Tailed Time Series. Mathematics Going Forward, Lecture Notes in Mathematics, 2313, Springer, Cham, Switzerland. doi:10.1007/978-3-031-12244-6_10.

Külekci, B. Y., Karabey, U., & Selcuk-Kestel, A. S. (2023). Assessment of dependent risk using extreme value theory in a time-varying framework. Hacettepe Journal of Mathematics and Statistics, 52(1), 248–267. doi:10.15672/hujms.992699.

Yousof, H. M., Tashkandy, Y., Emam, W., Ali, M. M., & Ibrahim, M. (2023). A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data. Mathematics, 11(4), 966. doi:10.3390/math11040966.

Canton Enriquez, D., Niembro-Ceceña, J. A., Muñoz Mandujano, M., Alarcon, D., Arcadia Guerrero, J., Gonzalez Garcia, I., Montes Gutierrez, A. A., & Gutierrez-Lopez, A. (2022). Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset. Data in Brief, 40, 107783. doi:10.1016/j.dib.2021.107783.

Chutiman, N., Guayjarernpanishk, P., Chiangpradit, M., Busababodhin, P., Rattanawan, S., Phoophiwfa, T., & Kong-ied, B. (2022). The Risk Area Assessment on Re-emerging Diseases in Elderly People by Using Extreme Value Theory. International Journal of Mathematics and Computer Science, 17(1), 243–253.

Einmahl, J. H. J., Li, J., & Liu, R. Y. (2015). Bridging centrality and extremity: Refining empirical data depth using extreme value statistics. Annals of Statistics, 43(6), 2738–2765. doi:10.1214/15-AOS1359.

Vignotto, E., & Engelke, S. (2020). Extreme value theory for anomaly detection – the GPD classifier. Extremes, 23(4), 501–520. doi:10.1007/s10687-020-00393-0.

Croitoru, A. E., & Piticar, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33(8), 1987–2001. doi:10.1002/joc.3567.

Olmo, M., Bettolli, M. L., & Rusticucci, M. (2020). Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America. Weather and Climate Extremes, 29. doi:10.1016/j.wace.2020.100267.

Tošić, I., Putniković, S., Tošić, M., & Lazić, I. (2021). Extreme temperature events in serbia in relation to atmospheric circulation. Atmosphere, 12(12), 1584. doi:10.3390/atmos12121584.

Busababodhin, P., Chiangpradit, M., Papukdee, N., Ruechairam, J., Ruanthaisong, K., & Guayjarernpanishk, P. (2021). Extreme Value Modeling of Daily Maximum Temperature with the r-Largest Order Statistics. The Journal of Applied Science, 20(1), 28–38. doi:10.14416/j.appsci.2021.01.003.

Gong, X., Wang, X., Li, Y., Ma, L., Li, M., & Si, H. (2022). Observed Changes in Extreme Temperature and Precipitation Indices on the Qinghai-Tibet Plateau, 1960–2016. Frontiers in Environmental Science, 10, 888937. doi:10.3389/fenvs.2022.888937.

Chiangpradit, M., Busababodhin, P., Chutiman, N., Guayjarernpanishk, P., & Kong-ied, B. (2022). Probability Analysis for Maximum Temperature in Northeast of Thailand. International Journal of Mathematics and Computer Science, 17(2), 589–599.

Coles, S., & Nadaraja, S. (2001). An Introduction to statistical modeling of extreme values. Springer, London United Kingdom.

Zhang, J. (2002). Powerful Goodness-of-fit Tests Based on the Likelihood Ratio. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2), 281–294. doi:10.1111/1467-9868.00337.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Pannarat Guayjarernpanishk, Nipaporn Chutiman, Monchaya Chiangpradit, Butsakorn Kong-ied

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message