Influential and Intellectual Structure of Geopolymer Concrete: A Bibliometric Review

Salam Al-Kasassbeh, Jafar Al-Thawabteh, Eslam Al-Kharabsheh, Amani Al-Tamseh


The objective of this bibliometric review is to deliver an in-depth examination of the dynamic field of geopolymer concrete, revealing its evolution, current trends, and possible future trajectories. The method involves a rigorous bibliometric analysis of research output since the field's inception in 2003, underlining key milestones and mapping research patterns. Findings show a consistent surge in geopolymer concrete research, exemplified by over 1360 annual publications, with notable contributions predominantly from Australia and India. The paper also uncovers the increasing practical applications of geopolymer concrete, especially in construction processes, underpinned by a wealth of research on fly ash, a crucial manufacturing component. Additionally, prevalent research themes include compressive strength, fly ash, and geopolymer itself. The review's novelty lies in its comprehensive overview of geopolymer concrete research, elucidating past and present trends and identifying potential future research areas. It thereby serves as a firm foundation for further studies, fostering continued growth in this promising field.


Doi: 10.28991/CEJ-2023-09-09-017

Full Text: PDF


Geopolymer Concrete; Building Materials; Alternative Materials; Bibliometric Review.


Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.

Malhotra, V. M., & Mehta, P. K. (2002). High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories. Supplementary Cementing Materials for Sustainable Development, Ottawa, Canada.

Lämmlein, T. D., Messina, F., Wyrzykowski, M., Terrasi, G. P., & Lura, P. (2019). Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites, 100, 130–138. doi:10.1016/j.cemconcomp.2019.02.014.

Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270, 122389. doi:10.1016/j.jclepro.2020.122389.

Nguyen, K. T., Ahn, N., Le, T. A., & Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Construction and Building Materials, 106, 65–77. doi:10.1016/j.conbuildmat.2015.12.033.

Teh, S. H., Wiedmann, T., Castel, A., & de Burgh, J. (2017). Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312–320. doi:10.1016/j.jclepro.2017.03.122.

Ma, Q., Shi, Y., Xu, Z., Ma, D., & Huang, K. (2022). Research on a multivariate non-linear regression model of dynamic mechanical properties for the alkali-activated slag mortar with rubber tire crumb. Case Studies in Construction Materials, 17, 1371. doi:10.1016/j.cscm.2022.e01371.

Rao, G. M., Kumar, K. S., Poloju, K. K., & Srinivasu, K. (2020). An Emphasis of Geopolymer Concrete with Single Activator and Conventional Concrete with Recycled Aggregate and Data Analyzing using Artificial Neural Network. IOP Conference Series: Materials Science and Engineering, 998(1), 12060. doi:10.1088/1757-899X/998/1/012060.

Benalia, S., Zeghichi, L., & Benghazi, Z. (2022). A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands. Civil Engineering Journal, 8(8), 1622-1638. doi:10.28991/CEJ-2022-08-08-07.

Rehman, F., Khokhar, S. A., & Khushnood, R. A. (2022). ANN based predictive mimicker for mechanical and rheological properties of eco-friendly geopolymer concrete. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01536.

Tran, T. T., Pham, T. M., & Hao, H. (2019). Experimental and analytical investigation on flexural behaviour of ambient cured geopolymer concrete beams reinforced with steel fibers. Engineering Structures, 200, 109707. doi:10.1016/j.engstruct.2019.109707.

Yang, H., Liu, L., Yang, W., Liu, H., Ahmad, W., Ahmad, A., Aslam, F., & Joyklad, P. (2022). A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Studies in Construction Materials, 16, 830. doi:10.1016/j.cscm.2021.e00830.

Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. doi:10.1016/j.jclepro.2020.124353.

Matsimbe, J., Dinka, M., Olukanni, D., & Musonda, I. (2022). A Bibliometric Analysis of Research Trends in Geopolymer. Materials, 15(19), 6979. doi:10.3390/ma15196979.

Davidovits, J. (1980). Polymere Mineral, French Patent Application´FR 79.22041 (FR 2,464,227), (1979), and FR 80.18970 (FR2, 489, 290), Mineral polymer, US Patent.

Kashani, A., Ngo, T. D., Walkley, B., & Mendis, P. (2017). Thermal performance of calcium-rich alkali-activated materials: A microstructural and mechanical study. Construction and Building Materials, 153, 225–237. doi:10.1016/j.conbuildmat.2017.07.119.

Sarker, P. K., Haque, R., & Ramgolam, K. V. (2013). Fracture behaviour of heat cured fly ash based geopolymer concrete. Materials & Design, 44, 580–586. doi:10.1016/j.matdes.2012.08.005.

Nodehi, M., & Aguayo, F. (2021). Ultra high performance and high strength geopolymer concrete. Journal of Building Pathology and Rehabilitation, 6(1). doi:10.1007/s41024-021-00130-5.

Irfan Khan, M., Azizli, K., Sufian, S., Khan, A. S., Ullah, H., & Man, Z. (2014). Geopolymers as a Sustainable Binder of 21st Century: A Review. Proceedings of the 4th World Sustainability Forum. doi:10.3390/wsf-4-d010.

Zain, H., Abdullah, M. M. A. B., Hussin, K., Ariffin, N., & Bayuaji, R. (2017). Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment. MATEC Web of Conferences, 97, 1021. doi:10.1051/matecconf/20179701021.

Lakshmi, R., & Nagan, S. (2011). Utilization of waste e plastic particles in cementitious mixtures. Journal of Structural Engineering (Madras), 38(1), 26–35.

Kong, D. L. Y., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research, 40(2), 334–339. doi:10.1016/j.cemconres.2009.10.017.

Chu, H., Jiang, J., Sun, W., & Zhang, M. (2016). Mechanical and physicochemical properties of ferro-siliceous concrete subjected to elevated temperatures. Construction and Building Materials, 122, 743–752. doi:10.1016/j.conbuildmat.2016.06.104.

Memon, F. A., Nuruddin, M. F., Demie, S., & Shafiq, N. (2012). Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete. Research Journal of Applied Sciences, Engineering and Technology, 4(5), 407–414.

Shi, X. S., Wang, Q. Y., Zhao, X. L., & Collins, F. (2012). Discussion on Properties and Microstructure of Geopolymer Concrete Containing Fly Ash and Recycled Aggregate. Advanced Materials Research, 450–451, 1577–1583. doi:10.4028/

Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design (1980-2015), 52, 580–586. doi:10.1016/j.matdes.2013.06.001.

Nuaklong, P., Sata, V., & Chindaprasirt, P. (2016). Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production, 112, 2300–2307. doi:10.1016/j.jclepro.2015.10.109.

Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and Concrete Composites, 72, 235–245. doi:10.1016/j.cemconcomp.2016.06.017.

Ganeshan, A., & Venkataraman, S. (2017). Self-Consolidating Geopolymer Concrete as an Aid to Green Technologies - Review on Present Status. Asian Journal of Research in Social Sciences and Humanities, 7(3), 510. doi:10.5958/2249-7315.2017.00187.3.

Druta, C. (2003). Tensile strength and bonding characteristics of self-compacting concrete. Master Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, United States.

Kavitha, O. R., Shanthi, V. M., Arulraj, G. P., & Sivakumar, V. R. (2016). Microstructural studies on eco-friendly and durable Self-compacting concrete blended with metakaolin. Applied Clay Science, 124–125, 143–149. doi:10.1016/j.clay.2016.02.011.

Reddy, C. J., & Elavenil, S. (2017). Geopolymer concrete with self-compacting: A review. International Journal of Civil Engineering and Technology, 8(2), 163–172.

Liu, M. Y. J., Alengaram, U. J., Santhanam, M., Jumaat, M. Z., & Mo, K. H. (2016). Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 120, 112–122. doi:10.1016/j.conbuildmat.2016.05.076.

Memon, F. A., Nuruddin, M. F., & Shafiq, N. (2013). Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. International Journal of Minerals, Metallurgy, and Materials, 20(2), 205–213. doi:10.1007/s12613-013-0714-7.

Al-Majidi, M. H., Lampropoulos, A., & Cundy, A. B. (2017). Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Composite Structures, 168, 402–427. doi:10.1016/j.compstruct.2017.01.085.

Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7), 4014198. doi:10.1061/(asce)mt.1943-5533.0001157.

Ahmari, S., & Zhang, L. (2012). Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials, 29, 323–331. doi:10.1016/j.conbuildmat.2011.10.048.

Khandelwal, M., Ranjith, P. G., Pan, Z., & Sanjayan, J. G. (2013). Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition. Arabian Journal of Geosciences, 6(7), 2383–2389. doi:10.1007/s12517-011-0507-0.

Castel, A. (2017). Bond Between Steel Reinforcement and Geopolymer Concrete. Handbook of Low Carbon Concrete, 375–387, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-804524-4.00014-2.

Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2015). Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete. Materials and Structures/Materiaux et Constructions, 48(3), 733–741. doi:10.1617/s11527-014-0318-3.

Sumajouw, D.M.J., Hardjito, D., Wallah, S.E., & Rangan, B. V., (2004). Geopolymer concrete for a sustainable future. Green Processes Conference. Fremantle, Australia.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2005). Introducing fly ash-based geopolymer concrete: manufacture and engineering properties. 30th conference on our world in concrete & structures, 23-24 August. 2005, Singapore.

Hardjito, D., Cheak, C. C., & Lee Ing, C. H. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar. Modern Applied Science, 2(4), 3–11. doi:10.5539/mas.v2n4p3.

Alrawashdeh, N., Alsmadi, A. A., & Al-Gasaymeh, A. (2022). FinTech: A Bibliometric Analysis for the Period of 2014-2021. Quality - Access to Success, 23(188), 176–188. doi:10.47750/QAS/23.188.24.

Alshater, M. M., Atayah, O. F., & Khan, A. (2022). What do we know about business and economics research during COVID-19: a bibliometric review. Economic Research, 35(1), 1884–1912. doi:10.1080/1331677X.2021.1927786.

Pritchard, A. (1969). Statistical Bibliography or Bibliometrics. Journal of Documentation, 25, 348.

Hota, P. K., Subramanian, B., & Narayanamurthy, G. (2020). Mapping the Intellectual Structure of Social Entrepreneurship Research: A Citation/Co-citation Analysis. Journal of Business Ethics, 166(1), 89–114. doi:10.1007/s10551-019-04129-4.

Lezama-Nicolás, R., Rodríguez-Salvador, M., Río-Belver, R., & Bildosola, I. (2018). A bibliometric method for assessing technological maturity: the case of additive manufacturing. Scientometrics, 117(3), 1425–1452. doi:10.1007/s11192-018-2941-1.

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. doi:10.1007/s11192-009-0146-3.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.

Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.

Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799–813. doi:10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G.

Pattnaik, D., Hassan, M. K., Kumar, S., & Paul, J. (2020). Trade credit research before and after the global financial crisis of 2008 – A bibliometric overview. Research in International Business and Finance, 54, 101287. doi:10.1016/j.ribaf.2020.101287.

Rangan, B. V. (2014). Geopolymer concrete for environmental protection. The Indian Concrete Journal, 88(4), 41-59.

Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-017


  • There are currently no refbacks.

Copyright (c) 2023 Salam Al kasassbeh, Jafar Al thawabteh, Eslam AL-kharabsheh, Amani Altamseh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.