Seepage Analysis and Optimization of Reservoir Earthen Embankment with Double Textured HDPE Geo-Membrane Barrier

Kennedy C. Onyelowe, Akash Nimbalkar, Narala G. Reddy, Jair de Jesus A. Baldovino, Shadi Hanandeh, Ahmed M. Ebid

Abstract


This research paper focuses on conducting a steady state seepage analysis along with the downstream slope factor of safety using the Modified Bishops method in a poorly compacted earthen embankment and optimizing the same reservoir earthen embankment in a case study located near Sadiyavav village in Junagadh district in Gujarat, India. The study site, situated at 21°32'06.5"N and 70°37'26.7"E, is renowned for its Asiatic lions. The analysis and optimization were performed with a double-textured High-Density Polyethylene (HDPE) Geo-membrane barrier. Previously, designs and numerical solutions proposed homogenous embankments and too poorly compacted with no drainage arrangements, which led to anisotropic conditions within the section and water seeping out, cutting the phreatic line. The paper presents the documented improvements in the factor of safety achieved through the seepage analysis and the optimization of the HDPE Geo-membrane barrier. Two improvement techniques were studied using the “Limiting Equilibrium-Finite Element Method” (LS-FEM). The first using (HDPE) Geo-membrane stabilized with gabions, and the second alternative using HDPE Geo-membrane with gabions in addition to rock toe. The study results showed improvements in the downstream slope stability for the two alternatives by 3% and 10%, respectively.

 

Doi: 10.28991/CEJ-2023-09-11-07

Full Text: PDF


Keywords


Earthen Embankment; Seepage Analysis; High Density Polyethylene (HDPE) Geo-membrane; FEM Optimization; Seepage; Bed/Slope Stability; Factor of Safety (FOS).

References


Onyelowe, K. C., Ebid, A. M., Ramani Sujatha, E., Fazel-Mojtahedi, F., Golaghaei-Darzi, A., Kontoni, D. P. N., & Nooralddin-Othman, N. (2023). Extensive overview of soil constitutive relations and applications for geotechnical engineering problems. Heliyon, 9(3), 1–30. doi:10.1016/j.heliyon.2023.e14465.

Bensmaine, A., Benmebarek, N., & Bensmebarek, S. (2022). Numerical Analysis of Seepage Failure Modes of Sandy Soils within a Cylindrical Cofferdam. Civil Engineering Journal, 8(7), 1388-1405. doi:10.28991/CEJ-2022-08-07-06.

Reddy, P. S., Reddy, N. G., Serjun, V. Z., Mohanty, B., Das, S. K., Reddy, K. R., & Rao, B. H. (2021). Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs. Waste and Biomass Valorization, 12(3), 1185–1217. doi:10.1007/s12649-020-01089-z.

Onyelowe, K. C., Sujatha, E. R., Aneke, F. I., & Ebid, A. M. (2022). Solving geophysical flow problems in Luxembourg: SPH constitutive review. Cogent Engineering, 9(1), 2122158. doi:10.1080/23311916.2022.2122158.

Shukla, S. K. (2021). Geosynthetics and Ground Engineering: Sustainability Considerations. International Journal of Geosynthetics and Ground Engineering, 7(1), 17. doi:10.1007/s40891-021-00256-z.

Onyelowe, K. C., Mojtahedi, F. F., Azizi, S., Mahdi, H. A., Sujatha, E. R., Ebid, A. M., Darzi, A. G., & Aneke, F. I. (2022). Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs, 6(5), 69. doi:10.3390/designs6050069.

Kumar, G., & Reddy, K. R. (2021). Temperature Effects on Stability and Integrity of Geomembrane–Geotextile Interface in Municipal Solid Waste Landfill. International Journal of Geosynthetics and Ground Engineering, 7(2), 021–00262–1. doi:10.1007/s40891-021-00262-1.

Datta, M. (2012). Geotechnology for Environmental Control at Waste Disposal Sites. Indian Geotechnical Journal, 42(1), 1–36. doi:10.1007/s40098-012-0002-x.

Bhowmik, R., Shahu, J. T., & Datta, M. (2018). Failure analysis of a geomembrane lined reservoir embankment. Geotextiles and Geomembranes, 46(1), 52–65. doi:10.1016/j.geotexmem.2017.10.005.

Demirdogen, S., & Gunaratne, M. (2022). Stability analysis of embankment dams with defective internal geomembrane liners. International Journal of Geotechnical Engineering, 16(9), 1165–1175. doi:10.1080/19386362.2021.2014676.

Messerklinger, S. (2014). Failure of a geomembrane lined embankment dam - Case study. Geotextiles and Geomembranes, 42(3), 256–266. doi:10.1016/j.geotexmem.2013.12.004.

Yue, Z. R., Zhao, Y. C., Liu, Y. J., & Sun, T. C. (2006). Investigation on embankment improved by complex geomembrane. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 28(7), 853–856.

Wijayanto, A., Juwono, P., & Cahya, E. (2021). The Influence of Damage to the Geomembrane Layer on the Seepage Pattern and Discharge at the Homogeneous Embankment Dam. Civil and Environmental Science, 4(1), 076–083. doi:10.21776/ub.civense.2021.00401.7.

Chou, Y. C. A., Rowe, R. K., & Brachman, R. W. I. (2018). Erosion of silty sand tailings through a geomembrane defect under filter incompatible conditions. Canadian Geotechnical Journal, 55(11), 1564–1576. doi:10.1139/cgj-2017-0602.

Huo, W., Zhu, Z., Hao, J., Zhang, W., & Peng, Y. (2022). Experimental study and numerical simulation on effectiveness of different capillary barriers in silt low subgrade. Bulletin of Engineering Geology and the Environment, 81(6). doi:10.1007/s10064-022-02742-8.

Ngan-Tillard, D. J. M., Gorte, B. G. H., Verhagen, A. A. A., & Verbree, E. Bridging geomatics and geo- engineering. 2008 1st International Conference on Education and Training in Geo-Engineering Sciences: Soil Mechanics, Geotechnical Engineering, Engineering Geology and Rock Mechanics, 307–312.

Lechowicz, Z., & Wrzesiński, G. (2015). Assessment of embankment slope stability with geomembrane sealing. Geotechnical Engineering for Infrastructure and Development - Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2015, 13-17 September 2015, Edinburg, United Kingdom.

Banerjee, L., Chawla, S., & Bhandari, G. (2019). Experimental and 3-D finite element analyses on geocell-reinforced embankments. Journal of Testing and Evaluation, 47(3). doi:10.1520/JTE20170686.

Potts, D. M., Dounias, G. T., & Vaughan, P. R. (1990). Finite element analysis of progressive failure of Carsington embankment. Géotechnique, 40(1), 79–101. doi:10.1680/geot.1990.40.1.79.

Sujatono, S. (2021). Integrated slope stability analysis (SSA) with transient groundwater finite element method for embankment analysis. Jurnal Teknologi, 83(5), 9–17. doi:10.11113/jurnalteknologi.v83.16456.

Jimenez Fernandez, J. C., Castanon-Jano, L., Gaute Alonso, A., Blanco-Fernandez, E., Gonzalez Fernandez, J. C., Centeno Gonzalez, V., Castro-Fresno, D., & Garcia-Sanchez, D. (2022). 3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model. Ain Shams Engineering Journal, 13(2). doi:10.1016/j.asej.2021.09.019.

Shaghaghi, T., Ghadrdan, M., & Tolooiyan, A. (2020). Design and Optimisation of Drainage Systems for Fractured Slopes Using the XFEM and FEM. Simulation Modelling Practice and Theory, 103. doi:10.1016/j.simpat.2020.102110.

Wang, L., Wu, C., Gu, X., Liu, H., Mei, G., & Zhang, W. (2020). Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bulletin of Engineering Geology and the Environment, 79(6), 2763–2775. doi:10.1007/s10064-020-01730-0.

Mehr, S. S., & Field, M. S. (2022). Investigating seepage paths at the Golfaraj earthen dam, NW Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 55(2). doi:10.1144/qjegh2021-053.

Johari, A., & Talebi, A. (2019). Stochastic Analysis of Rainfall-Induced Slope Instability and Steady-State Seepage Flow Using Random Finite-Element Method. International Journal of Geomechanics, 19(8). doi:10.1061/(asce)gm.1943-5622.0001455.

Kamil, W. M. A. W., Yahya, N. F., Ismail, T. N. H. T., & Abd Latif, M. F. (2021). Settlement Analysis on the Road Embankment with Different Layer of Geotextile. Progress in Engineering Application and Technology, 2(1), 418-424.

Zhuang, Y., & Wang, K. (2018). Finite element analysis on the dynamic behavior of soil arching effect in piled embankment. Transportation Geotechnics, 14, 8–21. doi:10.1016/j.trgeo.2017.09.001.

Prakash, K. G., & Krishnamoorthy, A. (2022). Stability of Embankment Constructed on Soft Soil Treated with Soil–Cement Columns. Transportation Infrastructure Geotechnology, 10(4), 595–615. doi:10.1007/s40515-022-00237-3.

Prakash, K. G., Krishnamoorthy, A., Maddodi, B. S., Kumar, M. P., & Girish, M. G. (2022). An Embankment Stability Analysis Using Finite Element Method Constructed over Soft Consolidating Soil Improved from Lime Columns and Prefabricated Vertical Drains. Engineered Science, 17, 309–318. doi:10.30919/es8d643.

Xu, B., & Low, B. K. (2006). Probabilistic Stability Analyses of Embankments Based on Finite-Element Method. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1444–1454. doi:10.1061/(asce)1090-0241(2006)132:11(1444).

Abd El Raouf, M. (2020). Finite Element Analysis of Embankments on Soft Clay. Journal of Al-Azhar University Engineering Sector, 15(57), 963–970. doi:10.21608/auej.2020.120362.

Madhavi Latha, G., & Rajagopal, K. (2007). Parametric finite element analyses of geocell-supported embankments. Canadian Geotechnical Journal, 44(8), 917–927. doi:10.1139/T07-039.

Duda, A., & Siwowski, T. W. (2022). Stability and Settlement Analysis of a Lightweight Embankment Filled with Waste Tyre Bales over Soft Ground. Transportation Infrastructure Geotechnology, 9(4), 467–491. doi:10.1007/s40515-021-00184-5.

Wang, G., Bi, J., Fan, Y., Zhu, L., Zhang, F., & Feng, D. (2022). Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region. Sustainability (Switzerland), 14(19), 12272. doi:10.3390/su141912272.

Wang, X., Wang, X., Yang, G., Yang, X., & Zhang, D. (2022). Research on the Load Transfer Law of Cross-Sections of Pile-Supported Reinforced Embankments Based on the Finite Element Method. Sustainability (Switzerland), 14(13), 7831. doi:10.3390/su14137831.

Yingchaloenkitkhajorn, K. (2019). Analysis of embankment slope stability: the comparison of finite element limit analysis with limit equilibrium methods. MATEC Web of Conferences, 270, 02004. doi:10.1051/matecconf/201927002004.

Tschuchnigg, F., & Schweiger, H. F. (2018). Embankment prediction and back analysis by means of 2D and 3D finite element analyses. Computers and Geotechnics, 93, 104–114. doi:10.1016/j.compgeo.2017.05.012.

Rajesh, B. G., Chukka, S., & Dey, A. (2018). Finite element modeling of embankment resting on soft ground stabilized with prefabricated vertical drains. Elastic, 10(6).

Blanco, M., Castillo, F., Soriano, J., Noval, A. M., Touze-Foltz, N., Pargada, L., Rico, G. & Aguiar, E. (2012). Comparative study of three different kinds of geomembranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs. 5th European Geosynthetics Congress, 16-19 September, Valencia, Spain.

Wu, H., & Shu, Y. (2012). Stability of geomembrane surface barrier of earth dam considering strain-softening characteristic of geosynthetic interface. KSCE Journal of Civil Engineering, 16(7), 1123–1131. doi:10.1007/s12205-012-1466-z.

Girard, H., Fischer, S., & Alonso, E. (1990). Problems of friction posed by the use of geomembranes on dam slopes-examples and measurements. Geotextiles and Geomembranes, 9(2), 129–143. doi:10.1016/0266-1144(90)90010-A.

Fowmes, G. J., Dixon, N., & Jones, D. R. V. (2008). Validation of a numerical modelling technique for multilayered geosynthetic landfill lining systems. Geotextiles and Geomembranes, 26(2), 109–121. doi:10.1016/j.geotexmem.2007.09.003.

Dixon, N., Blümel, W., Stoewahse, C., Kamugisha, P., & Jones, D. R. V. (2002). Geosynthetic interface shear behaviour: Part 2 Characteristic values for use in design. Ground Engineering, 35(3), 49-53.

Sia, A. H. I., & Dixon, N. (2007). Distribution and variability of interface shear strength and derived parameters. Geotextiles and Geomembranes, 25(3), 139–154. doi:10.1016/j.geotexmem.2006.12.003.

Hedien, J., Altinakar, M., DeNeale, S., & Koritarov, V. (2023). Reservoir Lining for Pumped Storage Hydropower: Scoping Study of Geomembrane Lining Systems (No. ANL-22/90). Argonne National Lab. (ANL), Argonne, United States.

Lemus, M., Ramos, M. F., Yadav, P., Silva, N. A., Muga, N. J., Souto, A., Paunković, N., Mateus, P., & Pinto, A. N. (2020). Generation and distribution of quantum oblivious keys for secure multiparty computation. Applied Sciences (Switzerland), 10(12), 1–11. doi:10.3390/APP10124080.

Jones, D. R. V., & Dixon, N. (2005). Landfill lining stability and integrity: The role of waste settlement. Geotextiles and Geomembranes, 23(1), 27–53. doi:10.1016/j.geotexmem.2004.08.001.

Chau, T. L., & Nguyen, T. Q. (2021). Solutions for Underground Drainage and Stability of High Embankment Slope at Nhan Co. Industrial Zone, Dak Nong, Vietnam. Structural Health Monitoring and Engineering Structures. Lecture Notes in Civil Engineering, 148 Springer, Singapore. doi:10.1007/978-981-16-0945-9_35.

Kumar, S., & Roy, L. B. (2023). Case study on soil-reinforced embankment slope stability with natural fibre additives. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 176(5), 270–284. doi:10.1680/jensu.22.00080.

Chappel, M. J., Take, W. A., Brachman, R. W. I., & Rowe, R. K. (2008). A case study of wrinkles in a textured HDPE geomembrane on a slope. The First Pan American Geosythesics Conference & Exhibition, 2-5 March, 2008, Cancun, Mexico.

Mehmood, E., Rashid, I., Ahmed, F., Farooq, K., Tufail, A., & Ebid, A. M. (2022). Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan. Sustainability (Switzerland), 14(24), 16740. doi:10.3390/su142416740.

Louw, S. (2023). A Case Study: Shear Interface Testing of a Constructed Geosynthetic Barrier. E3S Web of Conferences, 368, 02006. doi:10.1051/e3sconf/202336802006.

IS 16352. (2020). Geosynthetics - High Density Polyethylene (HDPE) Geo-membrane s for Lining. Bureau of Indian Standards (BIS), New Delhi, India.

ASTM D5199-12. (2019). Standard Test Method for Measuring the Nominal Thickness of Geosynthetics. ASTM International, Pennsylvania, United States. doi:10.1520/D5199-12R19.

ISO 811:2018. (2018). Textiles. Determination of resistance to water penetration. Hydrostatic pressure test. International Organization for Standardization (ISO), Geneva, Switzerland.

IS 14293. (1995). Geotextiles - Method of test for trapezoid tearing strength. Bureau of Indian Standards (BIS), New Delhi, India.

ASTM D4833/D4833M-07. (2020). Standard Test Method for Index Puncture Resistance of Geo-membrane s and Related Products. ASTM International, Pennsylvania, United States. doi:10.1520/D4833_D4833M-07R20.

ASTM D4595-11. (2017). Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method. ASTM International, Pennsylvania, United States. doi:10.1520/D4595-11.

IS 2530. (1963). Methods of test for polyethylene moulding materials and polyethylene compounds [PCD 12: Plastics]. Bureau of Indian Standards (BIS), New Delhi, India.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Kennedy C. ONYELOWE, Akash NIMBALKAR, Narala Gangadhara REDDY, Jair de Jesus Arrieta BALDOVINO, Shadi Hanandeh, Ahmed M. Ebid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message