Evolution and Implications of Changes in Seismic Load Codes for Earthquake Resistant Structures Design
Downloads
Doi: 10.28991/CEJ-2024-010-01-04
Full Text: PDF
[2] N.I-18:1970. (1969). Indonesian Loading Code. Foundation for the Research Institute for Building Problems, Indonesian Standard Code, Bandung, Indonesia. (In Indonesian).
[3] Otani, S. (2004). Earthquake Resistant Design of Reinforced Concrete Buildings. Journal of Advanced Concrete Technology, 2(1), 3–24. doi:10.3151/jact.2.3.
[4] Dhakal, R. P. (2011). Structural design for earthquake resistance: Past, present and future. Canterbury Earthquakes Royal Commission, 22 February, 2011, Christchurch, New Zealand.
[5] Leimena, S. L. (1979). Disaster in Bali Caused by Earthquake 1976 (A Report). Disasters, 3(1), 85–87. doi:10.1111/j.1467-7717.1979.tb00203.x
[6] Indonesian Standard Code. (1981). Indonesian Earthquake Resistant Design Regulations for Buildings. Building Problem Research Institute, Jakarta, Indonesia.
[7] SNI 03–1726-2002. (2002). Earthquake Resistance Design Procedures for House and Building. National Standardization Agency of Indonesia, Jakarta, Indonesia. (In Indonesian).
[8] SNI 1726–2012. (2012). Earthquake Resistance Design Procedures for Building and Non-Building Structures. National Standardization Agency of Indonesia, Jakarta, Indonesia. (In Indonesian).
[9] SNI 1726–2019. (2019). Earthquake Resistance Design Procedures for Building and Non-Building Structures. National Standardization Agency of Indonesia, Jakarta, Indonesia. (In Indonesian).
[10] Afriadi, Y, & Satyarno, I. (2013). Comparison of Design Spectra of several Big Cities in Indonesia in the 2012 Earthquake SNI and 2002 Earthquake SNI. National Conference on Civil Engineering 7 (KoNTekS 7), 24-26 October, 2013, Surakarta, Indonesia. (In Indonesian).
[11] Sengara, I. W., & Aldiamar, F. (2021). Assessment on earthquake resistance spectral design load criteria for buildings and infrastructures in Indonesia. E3S Web of Conferences, 331, 07009. doi:10.1051/e3sconf/202133107009.
[12] Nugroho, W. O., Sagara, A., & Imran, I. (2022). The evolution of Indonesian seismic and concrete building codes: From the past to the present. Structures, 41, 1092–1108. doi:10.1016/j.istruc.2022.05.032.
[13] Faizah, R., & Saputra, E. (2018). Seismic Demand Due to the Earthquake Hazard Map 2017 Determination in Indonesia. Proceedings of the 7th Engineering International Conference on Education, Concept and Application on Green Technology. doi:10.5220/0009007101080116.
[14] Faizah, R., & Amaliah, R. (2021). Comparative Study of Indonesian Spectra Response Parameters for Buildings According To 2012 and 2019 Seismic Codes. International Journal of Integrated Engineering, 13(3). doi:10.30880/ijie.2021.13.03.020.
[15] Nugroho, N. S., Erizal, & Putra, H. (2021). Structure evaluation of building based on the earthquake response acceleration spectrum of the SNI 03-1726-2019. IOP Conference Series: Earth and Environmental Science, 871(1), 012013. doi:10.1088/1755-1315/871/1/012013.
[16] Sutjipto, S., & Sumeru, I. (2021). Anomaly Phenomena on the New Indonesian Seismic Code SNI 1726:2019 Design Response Spectra. ICCOEE2020&2021. Lecture Notes in Civil Engineering, 132, Springer, Singapore. doi:10.1007/978-981-33-6311-3_43.
[17] Partono, W., Irsyam, M., Nazir, R., Asrurifak, M., & Sari, U. C. (2022). Site Coefficient and Design Spectral Acceleration Evaluation of New Indonesian 2019 Website Response Spectra. International Journal of Technology, 13(1), 115. doi:10.14716/ijtech.v13i1.4132.
[18] Tampubolon, S., Simanjuntak, P., Tarapandjang, G. P., & I Putu Ellsa Sarassantika. (2023). The Performance Analysis of High-Rise Building Structure Based on SNI 03-1726-2012 & SNI 03-1726-2019 (Case Study: Tower 1 Transit-Oriented Development Apartment Pondok Cina, Depok). Journal of Infrastructure Planning and Engineering (JIPE), 2(1), 36–41. doi:10.22225/jipe.2.1.2023.36-41.
[19] SKBI 2.3.53.1987/UDC 693.55.693.25. (1987). Design Instructions for Reinforced Concrete and Reinforced Wall Structures for House and Building. Public Works Publishing Agency Foundation, Jakarta, Indonesia. (In Indonesian).
[20] Indonesian Standard Code. (1983). Indonesian Earthquake Resistant Design Provisions Code for Building. Foundation for the Research Institute for Building Problems, Jakarta, Indonesia. (In Indonesian).
[21] Fraser, I. A. N. (1983). A new draft code for seismic design of buildings in Indonesia. Bulletin of the New Zealand Society for Earthquake Engineering, 16(3), 247–254. doi:10.5459/bnzsee.16.3.247-254.
[22] SNI 03–1726-1989. (1989). Earthquake Resistance Design Guideline for House and Building. National Standardization Agency of Indonesia, Jakarta, Indonesia. (In Indonesian).
[23] UBC-97. (1997). Uniform Building Code Volume 2 Structural Engineering Design Provision. International Conference of Building Officials, Whittier, United States.
[24] Irsyam, M., Hendriyawan, Asrurifak, M., Ridwan, M., Aldiamar, F., Sengara, I. W., ... & Firmanti, A. (2013). Past earthquakes in Indonesia and new seismic hazard maps for earthquake design of buildings and infrastructures. Geotechnical Predictions and Practice in Dealing with Geohazards, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-5675-5_3.
[25] Sengara, I. W., Irsyam, M., Sidi, I. D., Mulia, A., Asrurifak, M., & Hutabarat, D. (2015). Development of earthquake risk-targeted ground motions for Indonesian Earthquake Resistance Building Code SNI 1726-2012. International Conference on Applications of Statistics and Probability, 12-15, 2015, Vancouver, Canada.
[26] ASCE 7–10. (2010). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers. Reston, United States. doi:10.1061/9780784412916.
[27] Luco, N., Ellingwood, B. R., Hamburger, R. O., Hooper, J. D., Kimball, J. K., & Kircher, C. A. (2007). Risk-targeted versus current seismic design maps for the conterminous United States. SEAOC 2007 Convention Proceedings, 26-29 September, 2007, Squaw Creek, United States.
[28] FEMA P-749. (2010). Earthquake-Resistant Design Concepts, an Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures. National Institute of Building Sciences Building Seismic Safety Council Washington, United States.
[29] Power, M., Chiou, B., Abrahamson, N., Bozorgnia, Y., Shantz, T., & Roblee, C. (2008). An Overview of the NGA Project. Earthquake Spectra, 24(1), 3–21. doi:10.1193/1.2894833.
[30] Sengara, I. W., & Aldiamar, F. (2021). Assessment on earthquake resistance spectral design load criteria for buildings and infrastructures in Indonesia. E3S Web of Conferences, 331, 07009. doi:10.1051/e3sconf/202133107009.
[31] Nugroho, W. O., Sagara, A., & Imran, I. (2022). The evolution of Indonesian seismic and concrete building codes: From the past to the present. Structures, 41, 1092–1108. doi:10.1016/j.istruc.2022.05.032.
[32] ASCE 7–16. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers. Reston, United States. doi:10.1061/9780784414248.
[33] Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. doi:10.1193/070113eqs184m.
[34] Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1115. doi:10.1193/062913eqs175m.
[35] Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117–1153. doi:10.1193/072813eqs219m.
[36] Stewart, J. P., & Seyhan, E. (2013). Semi-empirical nonlinear site amplification and its application in NEHRP site factors. Pacific Earthquake Engineering Research Center, University of California, Berkeley, United States.
[37] FEMA P-749. (2022). Earthquake-Resistant Design Concepts an Introduction to Seismic Provisions for New Buildings. Second Edition 2022. National Institute of Building Sciences Building Seismic Safety Council Washington, United States.
[38] FEMA 450. (2004). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Part 1. National Institute of Building Sciences Building Seismic Safety Council Washington, United States.
[39] ACI 318-19. (2019). Standard Building Code Requirements for Structural Concrete-Commentary on Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[40] Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic provisions. Journal of structural Engineering, 117(1), 19-28. doi:10.1061/(ASCE)0733-9445(1991)117:1(19).
[41] Mwafy, A. M., & Elnashai, A. S. (2002). Calibration of Force Reduction Factors of RC Buildings. Journal of Earthquake Engineering, 6(2), 239–273. doi:10.1080/13632460209350416.
[42] Uang, C. (1991). Comparison of seismic force reduction factors used in U.S.A. and Japan. Earthquake Engineering, Structural Dynamics, 20(4), 389–397. Portico. doi:10.1002/eqe.4290200407.
[43] Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172841.
[44] Miranda, E., & Bertero, V. V. (1994). Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra, 10(2), 357–379. doi:10.1193/1.1585778.
[45] Whittaker, A., Hart, G., & Rojahn, C. (1999). Seismic Response Modification Factors. Journal of Structural Engineering, 125(4), 438–444. doi:10.1061/(asce)0733-9445(1999)125:4(438).
[46] Elnashai, A. S., & Mwafy, A. M. (2002). Overstrength and force reduction factors of multistorey reinforced"concrete buildings. The Structural Design of Tall Buildings, 11(5), 329–351. doi:10.1002/tal.204.
[47] Structural Engineers Association of California (SEAOC). (2009). Seismic Design Recommendations Compilation Seismology Committee Structural Engineers Association of California. Structural Engineers Association of California (SEAOC), Sacramento, United States.
[48] Elnashai, A. S., & Di Sarno, L. (2015). Fundamentals of earthquake engineering: from source to fragility. John Wiley & Sons, Hoboken, United States.
[49] Malhotra, P. K. (2005). Return Period of Design Ground Motions. Seismological Research Letters, 76(6), 693–699. doi:10.1785/gssrl.76.6.693.
[50] Goel, R. K., & Chopra, A. K. (1997). Vibration properties of buildings determined from recorded earthquake motions. Berkeley: Earthquake Engineering Research Center, University of California, University of California, Berkeley, United States.
[51] FEMA 302. (1997). NEHRP Recommend Provision for Seismic Regulation for New Building. National Institute of Building Sciences Building Seismic Safety Council Washington, United States.
[52] Xiaoguang, C., Jingshan, B., Youwei, S., Jianyi, Z., & Yudong, Z. (2012). Comparison of seismic fortification criterion of eight Asian countries. 15th World Conference on Earthquake Engineering, 24-28 September, 2012, Lisbon, Portugal.
[53] NZS 1170.5:2004. (2004). Structural Design Actions and Commentary, Part 5, Earthquake Actions. Standard New Zealand, Wellington, New Zealand.
[54] EN 1998-1. (2004). Design for Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization (CEN), Brussels, Belgium.
[55] Seed, H. B., Ugas, C., & Lysmer, J. (1976). Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1), 221–243. doi:10.1785/bssa0660010221.
[56] Mohraz, B., & Sadek, F. (2001). Earthquake Ground Motion and Response Spectra. The Seismic Design Handbook. Springer, Boston, United States. doi:10.1007/978-1-4615-1693-4_2.
[57] Pitilakis, K., Riga, E., & Anastasiadis, A. (2012). Design spectra and amplification factors for Eurocode 8. Bulletin of Earthquake Engineering, 10(5), 1377–1400. doi:10.1007/s10518-012-9367-6.
[58] Pitilakis, K., Riga, E., & Anastasiadis, A. (2013). New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4), 925–966. doi:10.1007/s10518-013-9429-4.
[59] Kim, D.-K., Park, H.-G., & Sun, C.-G. (2019). Design Earthquake Response Spectrum Affected by Shallow Soil Deposit. Advances in Civil Engineering, 2019, 1–18. doi:10.1155/2019/4079217.
[60] Cubrinovski, M., & McCahon, I. (2011). Foundations on deep alluvial soils. Technical Report Prepared for the Canterbury Earthquakes Royal Commission, University of Canterbury, Christchurch, New Zealand.
[61] Dhakal, R. P., Lin, S.-L., Loye, A. K., & Evans, S. J. (2013). Seismic design spectra for different soil classes. Bulletin of the New Zealand Society for Earthquake Engineering, 46(2), 79–87. doi:10.5459/bnzsee.46.2.79-87.
[62] Leyendecker, E. V., Hunt, R. J., Frankel, A. D., & Rukstales, K. S. (2000). Development of Maximum Considered Earthquake Ground Motion Maps. Earthquake Spectra, 16(1), 21–40. doi:10.1193/1.1586081.
[63] Luo Kaihai, W. Y. (2006). Research on conversion relationships among the parameters of ground motions seismic design codes of China, America and Europe. Building Structure, 36(8), 103-107.
[64] Carvalho E, C. (2011). Overview of Eurocode 8 (Background and Applications). Eurocode, Brussels, Belgium. Available online https://eurocodes.jrc.ec.europa.eu/sites/default/files/2022-06/S1_EC8-Lisbon_E%20CARVALHO.pdf (accessed on December 2023).
[65] Beer, M., Kougioumtzoglou, I. A., Patelli, E., & Au, S. K. (Eds.). (2015). Encyclopedia of Earthquake Engineering. Berlin/Heidelberg, Germany, Springer. doi:10.1007/978-3-642-35344-4.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.