Evaluating the Moisture Susceptibility of Asphalt Mixtures Containing RCA and Modified by Waste Alumina

Sarah Khalid Ugla, Mohammed Qadir Ismael


The management of building and demolition waste is an important subject in the government's sustainability efforts. Today, recycling and reusing industrial waste and by-products is a topic of considerable relevance in every industry, but it is especially important in cement and concrete technology. Within the asphalt pavement sector, the necessity for environmentally friendly highway design and construction is at the top of the priority list. Nevertheless, due to the inferior behavior of the resulting recycled concrete aggregate (RCA) mixes, additional enhancement materials are needed. In this study, the effect of using alumina waste in the form of secondary aluminum dross (SAD) in the asphalt compacted specimens that contained RCA as coarse aggregate was discussed. The conventional limestone dust filler is replaced by SAD at rates of 10, 20, and 30% by filler weight in the control mix, and then the best percentage is used in mixtures containing RCA at rates of 25, 50, 75, and 100%. The experimental work includes volumetric properties by employing the Marshall design method, indirect tensile strength (ITS), and compressive strength. All the used percent of SAD enhanced the properties of the asphalt mixture; the tensile strength ratio (TSR) of the control mixture increased by 4.58%, 8.52%, and 7.64% for SAD rates (10, 20, and 30%), respectively. The best dosage of SAD was added to the mixture containing RCA at different specified rates. The maximum TSR (13.92%) was obtained at 25% RCA. The same steps were followed in the compressive strength test; adding SAD increased the index of retained strength (IRS) of the control mixture by 55.11, 13.42, and 9.13% for 10, 20, and 30%, respectively. Thereafter, the best dosage of 20% SAD was added to the hot mix asphalt (HMA) containing different RCA percents. The maximum IRS (17.43%) was also obtained at a 25% RCA.


Doi: 10.28991/CEJ-SP2023-09-019

Full Text: PDF


Alumina Waste; Recycled Concrete Aggregate; Tensile Strength Ratio; Index of Retained Strength.


Kringos, N., & Scarpas, A. (2008). Physical and mechanical moisture susceptibility of asphaltic mixtures. International Journal of Solids and Structures, 45(9), 2671–2685. doi:10.1016/j.ijsolstr.2007.12.017.

Sengoz, B., & Agar, E. (2007). Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Building and Environment, 42(10), 3621–3628. doi:10.1016/j.buildenv.2006.10.006.

Pasandín, A. R., & Pérez, I. (2020). Performance of hot-mix asphalt involving recycled concrete aggregates. International Journal of Pavement Engineering, 21(9), 1044–1056. doi:10.1080/10298436.2018.1518525.

Mercante, I. T., Bovea, M. D., Ibáñez-Forés, V., & Arena, A. P. (2012). Life cycle assessment of construction and demolition waste management systems: A Spanish case study. International Journal of Life Cycle Assessment, 17(2), 232–241. doi:10.1007/s11367-011-0350-2.

Martinez-Arguelles, G., Acosta, M. P., Dugarte, M., & Fuentes, L. (2019). Life Cycle Assessment of Natural and Recycled Concrete Aggregate Production for Road Pavements Applications in the Northern Region of Colombia: Case Study. Transportation Research Record, 2673(5), 397–406. doi:10.1177/0361198119839955.

Purushothaman, R., Amirthavalli, R. R., & Karan, L. (2015). Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 27(5), 04014168. doi:10.1061/(asce)mt.1943-5533.0001128.

Tam, V. W. Y., Tam, C. M., & Le, K. N. (2007). Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resources, Conservation and Recycling, 50(1), 82–101. doi:10.1016/j.resconrec.2006.05.012.

Albayati, A., Wang, Y., Wang, Y., & Haynes, J. (2018). A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustainable Materials and Technologies, 18, 81. doi:10.1016/j.susmat.2018.e00081.

Al-Bayati, N. K., & Qadir Ismael, M. (2023). Effect of differently treated recycled concrete aggregates on Marshall properties and cost-benefit of asphalt mixtures. Sustainable Engineering and Innovation, 5(2), 127–140. doi:10.37868/sei.v5i2.id201.

Chen, Y., Xu, S., Tebaldi, G., & Romeo, E. (2022). Role of mineral filler in asphalt mixture. Road Materials and Pavement Design, 23(2), 247–286. doi:10.1080/14680629.2020.1826351.

Soós, Z., Géber, R., Tóth, C., Igazvölgyi, Z., & Udvardi, B. (2017). Utilization of aluminium dross as asphalt filler. Epitoanyag - Journal of Silicate Based and Composite Materials, 69(3), 89–93. doi:10.14382/epitoanyag-jsbcm.2017.15.

Bhusal, S., Li, X., & Wen, H. (2011). Evaluation of Effects of Recycled Concrete Aggregate on Volumetrics of Hot-Mix Asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2205(1), 36–39. doi:10.3141/2205-05.

Albayati, N., & Ismael, M. Q. (2023). Effect of carbon fibers (length, dosage) on the Marshall and volumetric properties of HMA mixtures. Aibi, Revista de Investigacion Administracion e Ingenierias, 11(3), 71–80. doi:10.15649/2346030X.3243.

Al-Bayati, H. K. A., Tighe, S. L., & Achebe, J. (2018). Influence of recycled concrete aggregate on volumetric properties of hot mix asphalt. Resources, Conservation and Recycling, 130, 200–214. doi:10.1016/j.resconrec.2017.11.027.

Zou, G., Zhang, J., Liu, X., Lin, Y., & Yu, H. (2020). Design and performance of emulsified asphalt mixtures containing construction and demolition waste. Construction and Building Materials, 239, 117846. doi:10.1016/j.conbuildmat.2019.117846.

Wong, Y. D., Sun, D. D., & Lai, D. (2007). Value-added utilization of recycled concrete in hot-mix asphalt. Waste Management, 27(2), 294–301. doi:10.1016/j.wasman.2006.02.001.

Bahrami, A., & Nematzadeh, M. (2021). Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures. Construction and Building Materials, 300, 124039. doi:10.1016/j.conbuildmat.2021.124039.

Hussein, F. K., Ismael, M. Q., & Huseien, G. F. (2023). Rock Wool Fiber-Reinforced and Recycled Concrete Aggregate-Imbued Hot Asphalt Mixtures: Design and Moisture Susceptibility Evaluation. Journal of Composites Science, 7(10), 428. doi:10.3390/jcs7100428.

Kavussi, A., Hassani, A., Kazemian, F., & Taghipoor, M. (2019). Laboratory evaluation of treated recycled concrete aggregate in asphalt mixtures. International Journal of Pavement Research and Technology, 12(1), 26–32. doi:10.1007/s42947-019-0004-5.

Mills-Beale, J., & You, Z. (2010). The mechanical properties of asphalt mixtures with Recycled Concrete Aggregates. Construction and Building Materials, 24(3), 230–235. doi:10.1016/j.conbuildmat.2009.08.046.

Udvardi, B., Géber, R., & Kocserha, I. (2019). Investigation of Aluminum Dross as a Potential Asphalt Filler. International Journal of Engineering and Management Sciences, 4(1), 445–451. doi:10.21791/ijems.2019.1.55.

SCRB. (2003). Standard Specifications for Road and Bridge, Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition. State Corporation of Roads and Bridges, Ministry of Housing and Construction, Baghdad, Iraq.

Al-Saadi, A. A., & Ismael, M. Q. (2023). Improvement of Moisture Susceptibility for Asphalt Mixture with Ceramic Fiber. Journal of Engineering, 29(4), 78–91. doi:10.31026/j.eng.2023.04.05.

Taher, Z. K., & Ismael, M. Q. (2023). Moisture Susceptibility of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process. Journal of Engineering, 29(4), 128–143. doi:10.31026/j.eng.2023.04.09.

ASTM. (2018). Road and Paving Materials, Vehicle - Pavement Systems. ASTM International, Pennsylvania, United States.

MS-2. (2014). Asphalt Mix Design Methods (7th Institute). Asphalt Institute, Lexington, United States.

Hadi, S. S. (2017). Impact of Preparing HMA with Modified Asphalt Cement on Moisture and Temperature Susceptibility. Journal of Engineering, 23(11), 1–12. doi:10.31026/j.eng.2017.11.01.

Alnuami, S. A. razzaq, & Sarsam, S. I. (2020). Assessing the Influence of Moisture Damage under Repeated Load on Multilayer Interface Bond Strength of Asphalt Concrete. Journal of Engineering, 26(11), 21–42. doi:10.31026/j.eng.2020.11.02.

Mohammed, S. F., & Ismael, M. Q. (2021). Effect of polypropylene fibers on moisture susceptibility of warm mix asphalt. Civil Engineering Journal (Iran), 7(6), 988–997. doi:10.28991/cej-2021-03091704.

ASTM D1074 (2017). Standard Test Method for Compressive Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D1074-17.

Xu, X., Luo, Y., Sreeram, A., Wu, Q., Chen, G., Cheng, S., Chen, Z., & Chen, X. (2022). Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: A state-of-the-art review. Journal of Cleaner Production, 344(2). doi:10.1016/j.jclepro.2022.130893.

Pourtahmasb, M. S., & Karim, M. R. (2014). Performance evaluation of stone mastic asphalt and hot mix asphalt mixtures containing recycled concrete aggregate. Advances in Materials Science and Engineering, 2014. doi:10.1155/2014/863148.

Daquan, S., Yang, T., Guoqiang, S., Qi, P., Fan, Y., & Xingyi, Z. (2018). Performance evaluation of asphalt mixtures containing recycled concrete aggregates. International Journal of Pavement Engineering, 19(5), 422–428. doi:10.1080/10298436.2017.1402594.

Nwakaire, C. M., Yap, S. P., Yuen, C. W., Onn, C. C., Koting, S., & Babalghaith, A. M. (2020). Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. Journal of Cleaner Production, 262. doi:10.1016/j.jclepro.2020.121462.

Sanchez-Cotte, E. H., Fuentes, L., Martinez-Arguelles, G., Rondón Quintana, H. A., Walubita, L. F., & Cantero-Durango, J. M. (2020). Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Construction and Building Materials, 259, 120427. doi:10.1016/j.conbuildmat.2020.120427.

Hou, Y., Ji, X., Li, J., & Li, X. (2018). Adhesion between asphalt and recycled concrete aggregate and its impact on the properties of asphalt mixture. Materials, 11(12), 2528. doi:10.3390/ma11122528.

Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-019


  • There are currently no refbacks.

Copyright (c) 2022 Sarah Khalid Ugla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.