Cost Efficiency of Retrofitting Green Chemical Industrial Buildings

Albert Eddy Husin, Lastarida Sinaga, Mawardi Amin, . Kristiyanto, Eka Juni Arif, Bernadette D. Kussumardianadewi, Wyllem T. Ator

Abstract


Climate change is a threat and crisis that hit the world today. The green industry is widely implemented in the manufacturing sector as an effort to reduce negative impacts on the environment. The implementation of the green industry is influenced by various factors. The Chemical Industry is one sector that faces challenges in implementing green industry practices. The objective of this paper is to create an innovative conceptual framework that combines blockchain technology and building information modeling. This research examines the concept of green retrofitting in the chemical industry using an assessment based on the Ministry of Public Works and Housing Regulation No. 21 of 2021. The study was conducted in a chemical industry located in Cilegon, Banten, Indonesia. The research method combines Blockchain-Building Information Modeling (BIM) to analyze the cost efficiency of green retrofitting and Structural Equation Modeling-Partial Least Squares (SEM-PLS) as a tool to process data from questionnaires and identify influential factors. The results indicate that the use of Blockchain-BIM can reduce retrofitting costs by 4.42% for low-level, 4.45% for medium-level, and 4.40% for high-level categories. This demonstrates that Blockchain-BIM has a significant impact on improving cost performance in the retrofitting process.

 

Doi: 10.28991/CEJ-2024-010-03-04

Full Text: PDF


Keywords


Green Retrofit; Green Chemical Industry; Blockchain-BIM; SEM-PLS; Cost Efficiency.

References


Huo, T., Ren, H., Zhang, X., Cai, W., Feng, W., Zhou, N., & Wang, X. (2018). China’s energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method. Journal of Cleaner Production, 185(2018), 665–679. doi:10.1016/j.jclepro.2018.02.283.

Mi, Z. F., Pan, S. Y., Yu, H., & Wei, Y. M. (2015). Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. Journal of Cleaner Production, 103, 455–462. doi:10.1016/j.jclepro.2014.06.011.

Zhang, Y. J., Hao, J. F., & Song, J. (2016). The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level. Applied Energy, 174(2016), 213–223. doi:10.1016/j.apenergy.2016.04.109.

Li, D., Cui, P., & Lu, Y. (2016). Development of an automated estimator of life-cycle carbon emissions for residential buildings: A case study in Nanjing, China. Habitat International, 57, 154–163. doi:10.1016/j.habitatint.2016.07.003.

Le, D.-L., Nguyen, T.-Q., & Huu, K. D. (2021). Life Cycle Carbon Dioxide Emissions Assessment in the Design Phase: A Case of a Green Building in Vietnam. Engineering Journal, 25(7), 121–133. doi:10.4186/ej.2021.25.7.121.

Li, H., Deng, Q., Zhang, J., Xia, B., & Skitmore, M. (2019). Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 210(38), 1496–1506. doi:10.1016/j.jclepro.2018.11.102.

Javan, K., Mirabi, M., Hamidi, S. A., Darestani, M., Altaee, A., & Zhou, J. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal, 9(11), 2630–2648. doi:10.28991/cej-2023-09-11-01.

Ozturk, T., Altinsoy, H., Türkeș, M., & Kurnaz, M. (2012). Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Climate Research, 52, 63–76. doi:10.3354/cr01082.

Nukusheva, A., Ilyassova, G., Rustembekova, D., Zhamiyeva, R., & Arenova, L. (2021). Global warming problem faced by the international community: international legal aspect. International Environmental Agreements: Politics, Law and Economics, 21, 219-233. doi:10.1007/s10784-020-09500-9.

Tong, Z., Chen, Y., Malkawi, A., Liu, Z., & Freeman, R. B. (2016). Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 179, 660–668. doi:10.1016/j.apenergy.2016.07.019.

Atabay, S., Pelin Gurgun, A., & Koc, K. (2020). Incorporating BIM and Green Building in Engineering Education: Assessment of a School Building for LEED Certification. Practice Periodical on Structural Design and Construction, 25(4), 1–11. doi:10.1061/(asce)sc.1943-5576.0000528.

Liang, X., Shen, G. Q., & Guo, L. (2015). Improving management of green retrofits from a stakeholder perspective: A case study in China. International Journal of Environmental Research and Public Health, 12(11), 13823–13842. doi:10.3390/ijerph121113823.

Laudeman, S. M., Raja, T., & Bansal, N. (2022). Early-Stage Structural Steel Estimation for Embodied Carbon Decision Making. ASHRAE Building Decarbonization 2022 Conference, 5-7 October, 2022, Athens, Greece.

BPK (2024). Regulation of the Minister of Public Works and Public Housing of the Republic of Indonesia. (2021). Number 21 of 2021 concerning Green Building Performance Assessment. Tentang Database Peraturan, Jakarta, Indonesia. Available online: https://peraturan.bpk.go.id/Download/211361/Permen%20PUPR_21_2021.pdf (accessed on February 2024).

Sun, C. Y., Chen, Y. G., Wang, R. J., Lo, S. C., Yau, J. T., & Wu, Y. W. (2019). Construction cost of green building certified residence: A case study in Taiwan. Sustainability (Switzerland), 11(8), 2195. doi:10.3390/su11082195.

Colberg, J., Kuok, K., Hii, M., & Koenig, S. G. (2022). Importance of Green and Sustainable Chemistry in the Chemical Industry. ACS Sustainable Chemistry and Engineering, 10(26), 8239–8241. doi:10.1021/acssuschemeng.2c03306.

Homod, R. Z., & Sahari, K. S. M. (2013). Energy savings by smart utilization of mechanical and natural ventilation for hybrid residential building model in passive climate. Energy and Buildings, 60, 310-329. doi:10.1016/j.enbuild.2012.10.034.

Tang, B., Zou, Y., Yu, B., Guo, Y., & Zhao, G. (2021). Clean heating transition in the building sector: The case of Northern China. Journal of Cleaner Production, 307, 127206. doi:10.1016/j.jclepro.2021.127206.

Srivanit, M., & Jareemit, D. (2020). Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburbs. Journal of Building Engineering, 30, 101262. doi:10.1016/j.jobe.2020.101262.

Darko, A., Zhang, C., & Chan, A. P. C. (2017). Drivers for green building: A review of empirical studies. Habitat International, 60, 34–49. doi:10.1016/j.habitatint.2016.12.007.

Hwang, B. G., Zhu, L., Wang, Y., & Cheong, X. (2017). Green building construction projects in Singapore: Cost premiums and cost performance. Project Management Journal, 48(4), 67-79. doi:10.1177/875697281704800406.

Shiekh, A. El, & Barsoum, J. (2021). Determining Building Sustainability using BIM applications: Review. IJISET-International Journal of Innovative Science, Engineering & Technology, 8(6), 86-98.

Gunjan, V. K., Singh, S. N., Duc-Tan, T., Aponte, G. J. R., & Kumar, A. (Eds.). (2020). ICRRM 2019-System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Civil, Mechanical and Chemical Engineering. Springer Singapore. doi:10.1007/978-981-13-8507-0.

Al-Jaroodi, J., & Mohamed, N. (2019). Blockchain in Industries: A Survey. IEEE Access, 7, 36500–36515. doi:10.1109/access.2019.2903554.

Nawari, N., & Ravindran, S. (2019). Blockchain and Building Information Modeling (BIM): Review and Applications in Post-Disaster Recovery. Buildings, 9(6), 149. doi:10.3390/buildings9060149.

Abeyratne, S. A., & Monfared, R. P. (2016). Blockchain-ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 5(9), 1-10.

Brandão, A., Mamede, H. S., & Gonçalves, R. (2018). Systematic Review of the Literature, Research on Blockchain Technology as Support to the Trust Model Proposed Applied to Smart Places. Trends and Advances in Information Systems and Technologies, 27-29 March 2018, Naples, Italy.

Celik, Y., Petri, I., & Barati, M. (2023). Blockchain-supported BIM data provenance for construction projects. Computers in Industry, 144, 103768. doi:10.1016/j.compind.2022.103768.

Liu, Z., Jiang, L., Osmani, M., & Demian, P. (2019). Building information management (BIM) and blockchain (BC) for sustainable building design information management framework. Electronics, 8(7), 724. doi:10.3390/electronics8070724.

Amhaimedi, S., Naimi, S., & Alsallami, S. (2023). Assessment of a Decision-Making Model for Monitoring the Success of a Project for Smart Buildings. Civil Engineering Journal, 9(1), 127–142. doi:10.28991/cej-2023-09-01-010.

Ye, X., Sigalov, K., & König, M. (2020). Integrating BIM and cost-included information container with Blockchain for construction automated payment using billing model and smart contracts. Proceedings of the International Symposium on Automation and Robotics in Construction. doi:10.22260/isarc2020/0192.

Heaton, J., Parlikad, A. K., & Schooling, J. (2019). A Building Information Modelling approach to the alignment of organizational objectives to Asset Information Requirements. Automation in Construction, 104, 14–26. doi:10.1016/j.autcon.2019.03.022.

Du, X., Zhang, Y., & Lv, Z. (2020). Investigations and analysis of indoor environment quality of green and conventional shopping mall buildings based on customers’ perception. Building and Environment, 177, 106851. doi:10.1016/j.buildenv.2020.106851.

Fialho, B. C., Codinhoto, R., & Fabricio, M. M. (2020). BIM and IoT for the AEC Industry: A systematic literature mapping. Procedia Engineering, 2(4), 392-399.

Changsaar, C., Abidin, N. I., Khoso, A. R., Luenhui, L., Yaoli, X., & Hunchuen, G. (2022). Optimizing energy performance of an Eco-Home using Building Information Modelling (BIM). Innovative Infrastructure Solutions, 7(2), 140. doi:10.1007/s41062-022-00747-6.

Mathews, M., Robles, D., & Bowe, B. (2017). BIM+ blockchain: A solution to the trust problem in collaboration? CITA BIM Gathering 2017, November 23rd-24th November 2017, Dublin, Ireland. doi:10.21427/D73N5K.

Zia, I., Singh, P., Tiwari, A. K., & Pandey, A. (2022). Integration Blockchain for Data Sharing and Collaboration in Mobile Healthcare Applications. Lecture Notes in Electrical Engineering, 8-13 October, 2022, Montreal, Canada.

Kfoury, B. (2021). The role of blockchain in reducing the cost of financial transactions in the retail industry. WCNC-2021: Workshop on Computer Networks & Communications, 01 May 2021, Chennai, India.

Sreckovic, M., Sibenik, G., Breitfuß, D., & Preindl, T. (2020). Analysis of Design Phase Processes with BIM for Blockchain Implementation. SSRN Electronic Journal, 1-7. doi:10.2139/ssrn.3577529.

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J., & Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319–331. doi:10.1016/s0378-7788(00)00114-6.

Al-Abbas, B., Abdul Rasoul, Z. M. R., Hasan, D., & Rasheed, S. E. (2023). Experimental Study on Ultimate Strength of Steel Tube Column Filled with Reactive Powder Concrete. Civil Engineering Journal (Iran), 9(6), 1344–1355. doi:10.28991/CEJ-2023-09-06-04.

Husin, A. E., & Priyawan, P. (2023). Implementation of the Last Indonesian Minister Regulation of 2022 uses SEM-PLS and Blockchain-BIM to Green Cost Efficiency. Journal of Sustainable Architecture and Civil Engineering, 33(2), 96–112. doi:10.5755/j01.sace.33.2.34229.

Sutikno, S., Husin, A. E., & Yuliati, M. M. E. (2022). Using PLS-SEM to analyze the criteria for the optimum cost of green MICE projects in Indonesia based on value engineering and lifecycle cost analysis. Archives of Civil Engineering, 68(4), 555–570. doi:10.24425/ace.2022.143054.

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial Least Squares Structural Equation Modeling. Handbook of Market Research. Springer, Cham, Switzerland. doi:10.1007/978-3-319-57413-4_15.

Husin, A. E., Ardiansyah, M. K., Kussumardianadewi, B. D., & Kurniawan, I. (2023). A Study on the Application of Green Retrofitting in the Ready-Mix Concrete (RMC) Industry in Indonesia to Improve Cost Retrofitting Performance. Civil Engineering and Architecture, 11(5), 2958–2973. doi:10.13189/cea.2023.110812.

Husin, A. E., Priyawan, P., Kussumardianadewi, B. D., Pangestu, R., Prawina, R. S., Kristiyanto, K., & Arif, E. J. (2023). Renewable Energy Approach with Indonesian Regulation Guide Uses Blockchain-BIM to Green Cost Performance. Civil Engineering Journal (Iran), 9(10), 2486–2502. doi:10.28991/CEJ-2023-09-10-09.

Yuliatti, M. M. E., Husin, A. E., & Sutikno, S. (2022). Improved Performance of Toll Road Projects Based on System Dynamics Integrated Life Cycle Cost Analysis Green Retrofitting. Civil Engineering and Architecture, 10(6), 2713–2730. doi:10.13189/cea.2022.100635.

PUPR. (2022). Regulation of the Minister of Public Works and Public Housing Number 21 of 2021 concerning Green Building Performance Assessment. Ministerial Regulation Number 21: PUPR Ministry Legal Bureau, Jakarta, Indonesia. Available online: https://jdih.pu.go.id/detail-dokumen/2881/1#div_cari_detail (accessed on April 2023).


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Lastarida Sinaga, Kristiyanto Kristiyanto, Albert Eddy Husin, Mawarni Amin, Mekro Permana Pinem

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message