Landslide Susceptibility Assessment in Western External Rif Chain using Machine Learning Methods

Marouane Benmakhlouf, Younes El Kharim, Jesus Galindo-Zaldivar, Reda Sahrane


Landslides are a major natural hazard in the mountainous Rif region of Northern Morocco. This study aims to create and compare landslide susceptibility maps in the Western External Rif Chain context using three advanced machine learning models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbors (KNN). The landslide database, created by satellite imagery and field research, contains an inventory of 3528 cases of slope movements. A database of 12 conditioning factors was prepared, including elevation, slope, aspect, curvature, lithology, rainfall, topographic wetness index (TWI), stream power index (SPI), distance to streams, distance to faults, distance to roads, and land cover. The database was randomly divided into training and validation sets at a ratio of 70/30. The predictive capabilities of the models were evaluated using overall accuracy (Acc), area under the receiver operating characteristic curve (AUC), kappa index, and F score measures. The results indicated that RF was the most suitable model for this study area, demonstrating the highest predictive capability (AUC= 0.86) compared to the other models. This aligns with previous landslide studies, which found that ensemble methods like RF and XGBoost offer superior accuracy. The most important causal factors of landslides in the study area were identified as slope, rainfall, and elevation, while the influence rate of TWI and SPI was the minimum. By analyzing a larger inventory of landslides on a more extensive scale, this study aims to improve the accuracy and reliability of landslide predictions in a west Mediterranean morphoclimatic context that encompasses a wide variety of lithologies. The resulting maps can serve as a crucial resource for land use planning and disaster management planning.


Doi: 10.28991/CEJ-2023-09-12-018

Full Text: PDF


Landslides; XGBoost; K-nearest Neighbour; Random Forest; Susceptibility.


Maurer, G. (1968). Les montagnes du Rif central: Etude géomorphologique. Université de Paris, Paris, France.

Millies-Lacroix, A. (1968). Les glissements de terrains. Présentation d’une carte prévisionnelle des mouvements de masse dans le Rif (Maroc septentrional). Mines et Géologie, 27, 45–55.

Rouai, M., & Jaaidi, E. B. (2003). Scaling properties of landslides in the Rif mountains of Morocco. Engineering Geology, 68(3-4), 353-359. doi:10.1016/S0013-7952(02)00237-5.

Fonseca, A. (2014). Large deep-seated landslides in the northern Rif Mountains (Northern Morocco): inventory and analysis. Geological Society, London, Special Publications, 408, 195.

El Kharim, Y. (2012). Geological features of the slope instability in Tetouan region (the northern Rif, Morocco). Boletín de la RSEHN. Sección Geológica, 106, 39–52.

El Kharim, Y., Bounab, A., Ilias, O., Hilali, F., & Ahniche, M. (2021). Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): inventory and case study. Natural Hazards, 107(1), 355–373. doi:10.1007/s11069-021-04586-z.

Sahrane, R., El Kharim, Y., & Bounab, A. (2022). Investigating the effects of landscape characteristics on landslide susceptibility and frequency-area distributions: the case of Taounate province, Northern Morocco. Geocarto International, 37(27), 17686–17712. doi:10.1080/10106049.2022.2134462.

Bounab, A., Agharroud, K., El Kharim, Y., El Hamdouni, R., & Faghloumi, L. (2022). The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: the case of Ain Lahcen commune (Tetouan, Northern Morocco). Geocarto International, 37(25), 9967–9997. doi:10.1080/10106049.2022.2028905.

Sahrane, R., Bounab, A., & EL Kharim, Y. (2023). Investigating the effects of landslides inventory completeness on susceptibility mapping and frequency-area distributions: Case of Taounate province, Northern Morocco. Catena, 220, 106737. doi:10.1016/j.catena.2022.106737.

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., ... & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. doi:10.1016/j.earscirev.2020.103225.

Ado, M., Amitab, K., Maji, A. K., Jasińska, E., Gono, R., Leonowicz, Z., & Jasiński, M. (2022). Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing, 14(13), 3029. doi:10.3390/rs14133029.

Hussain, M. A., Chen, Z., Wang, R., Shah, S. U., Shoaib, M., Ali, N., Xu, D., & Ma, C. (2022). Landslide Susceptibility Mapping using Machine Learning Algorithm. Civil Engineering Journal (Iran), 8(2), 209–224. doi:10.28991/CEJ-2022-08-02-02.

Rabby, Y. W., Hossain, M. B., & Abedin, J. (2022). Landslide susceptibility mapping in three Upazilas of Rangamati hill district Bangladesh: application and comparison of GIS-based machine learning methods. Geocarto International, 37(12), 3371–3396. doi:10.1080/10106049.2020.1864026.

Chalouan, A., Michard, A., Feinberg, H., Montigny, R., & Saddiqi, O. (2001). The Rif mountain building (Morocco); A new tectonic scenario. Bulletin de La Société Géologique de France, 172(5), 603–616. doi:10.2113/172.5.603.

Suter, G. (1980a). Carte géologique de la Chaine Rifaine, échelle 1:500.000. Ministère de l’Energie et des Mines du Maroc, Direction de la Gélogie, Rabat. Notes et Mem. du Service Geol. du Maroc, 245a.

Suter, G. (1980b). Carte structurale du Maroc, échelle 1:500.000. Ministère de l’Energie et des Mines du Maroc, Direction de la Géologie, Rabat. Notes et Mem. du Service Geol. du Maroc, 245b.

Chalouan, A., & Michard, A. (2004). The Alpine Rif belt (Morocco): A case of mountain building in a subduction-subduction-transform fault triple junction. Pure and Applied Geophysics, 161(3), 489–519. doi:10.1007/s00024-003-2460-7.

Kornprobst, J. (1971). Contribution a l’étude pétrographique et structurale de la zone interne du Rif. Notes et Mémoires Du Service Géologique, Maroc, 251, 1–376.

De Lamotte, D. F., Bezar, B. Saint, Bracène, R., & Mercier, E. (2000). The two main steps of the atlas building and geodynamics of the Western Mediterranean. Tectonics, 19(4), 740–761. doi:10.1029/2000TC900003.

Michard, A. (1976). Eléments de Géologie Marocaine. Notes et Mémoires du Service Géologique du Maroc, 252.

Bargach, K., Galindo-Zaldívar, J., Galdeano, C., & Akil, M. (2023). Tectonic interpretation of late Cenozoic faulting and stress field evolution in the Rif Mountains, Morocco. Tectonophysics, 340(3–4), 151–169. doi:10.1016/S0040-1951(01)00151-0.

Mhammdi, N. A. (1991). Evolution tectonique Néogène et Quaternaire des zones externes de la région du Rif septentrional (Rif Nord-Oriental, Maroc). Ph.D. Thesis, Université Mohamed V, Rabat, Morocco.

ABHL. (2023). Agence Tétouan du Bassin Hydraulique du Loukkos, Tétouan, Morocco. Available online: (accessed on July 2023).

Rabby, Y. W., Ishtiaque, A., & Rahman, M. S. (2020). Evaluating the effects of digital elevation models in landslide susceptibility mapping in rangamati district, Bangladesh. Remote Sensing, 12(17), 2718. doi:10.3390/RS12172718.

Gaidzik, K., & Ramírez-Herrera, M. T. (2021). The importance of input data on landslide susceptibility mapping. Scientific Reports, 11(1). doi:10.1038/s41598-021-98830-y.

Chen, C. W., Chen, H., Wei, L. W., Lin, G. W., Iida, T., & Yamada, R. (2017). Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: a case study of the 2016 Kumamoto earthquake. Landslides, 14(5), 1793–1801. doi:10.1007/s10346-017-0872-1.

Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36. doi:10.1016/j.catena.2013.10.011.

Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D. T., ... & Zhu, A. X. (2018). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 164, 135-149. doi:10.1016/j.catena.2018.01.012.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324.

Liaw, A., & Wiener, M. (2002). Classification and Regression by Random Forest. R News, 2(3), 18-22.

Nouh, R. M., Lee, H. H., Lee, W. J., & Lee, J. D. (2019). A smart recommender based on hybrid learning methods for personal well-being services. Sensors (Switzerland), 19(2), 431. doi:10.3390/s19020431.

Marjanović, M., Bajat, B., & Kovačević, M. (2009). Landslide susceptibility assessment with machine learning algorithms. International Conference on Intelligent Networking and Collaborative Systems, 273–278. doi:10.1109/INCOS.2009.25.

Kuhn, M. A. (2013). Short Introduction to the caret Package. The Comprehensive R Archive Network, 1-10. Available online: (accessed online July 2023).

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.

Cao, J., Zhang, Z., Du, J., Zhang, L., Song, Y., & Sun, G. (2020). Multi-geohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China. Natural Hazards, 102(3), 851–871. doi:10.1007/s11069-020-03927-8.

Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399-419. doi:10.1023/B:NHAZ.0000007097.42735.9e.

Pham, B. T., Prakash, I., Dou, J., Singh, S. K., Trinh, P. T., Tran, H. T., Le, T. M., Van Phong, T., Khoi, D. K., Shirzadi, A., & Bui, D. T. (2020). A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 35(12), 1267–1292. doi:10.1080/10106049.2018.1559885.

Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural hazards, 59, 1413-1444. doi:10.1007/s11069-011-9844-2.

Yu, X., Zhang, K., Song, Y., Jiang, W., & Zhou, J. (2021). Study on landslide susceptibility mapping based on rock–soil characteristic factors. Scientific Reports, 11(1), 15476. doi:10.1038/s41598-021-94936-5.

Li, Y., Zhang, H., Huang, L., Li, H., & Wu, X. (2023). The formation mechanism of landslides in typical fault zones and protective countermeasures: A case study of the Nanpeng River fault zone. Frontiers in Earth Science, 10, 1-11. doi:10.3389/feart.2022.1092662.

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. doi:10.1038/s41597-020-0453-3.

Dai, X., Zhu, Y., Sun, K., Zou, Q., Zhao, S., Li, W., Hu, L., & Wang, S. (2023). Examining the Spatially Varying Relationships between Landslide Susceptibility and Conditioning Factors Using a Geographical Random Forest Approach: A Case Study in Liangshan, China. Remote Sensing, 15(6), 1513. doi:10.3390/rs15061513.

Rabby, Y. W., Li, Y., Abedin, J., & Sabrina, S. (2022). Impact of Land Use/Land Cover Change on Landslide Susceptibility in Rangamati Municipality of Rangamati District, Bangladesh. ISPRS International Journal of Geo-Information, 11(2), 89. doi:10.3390/ijgi11020089.

Chowdhury, M. S. (2023). A review on landslide susceptibility mapping research in Bangladesh. Heliyon, 9(7), e17972. doi:10.1016/j.heliyon.2023.e17972.

Khalil, U., Imtiaz, I., Aslam, B., Ullah, I., Tariq, A., & Qin, S. (2022). Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district. Frontiers in Environmental Science, 10, 1028373. doi:10.3389/fenvs.2022.1028373.

Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3), 1–17. doi:10.1007/s12665-015-4950-1.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-018


  • There are currently no refbacks.

Copyright (c) 2024 Marouane Benmakhlouf, Younes El Kharim, Jesus Galindo Zaldivar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.