Evaluation of the Mechanical Behavior of Soil Stabilized with Asphalt Emulsion Using Multi-Stage Loading
Downloads
Doi: 10.28991/CEJ-2024-010-01-02
Full Text: PDF
[2] Rahman, M. S., Erlingsson, S., & Ahmed, A. (2023). Modelling the permanent deformation of unbound granular materials in pavements. Road Materials and Pavement Design, 24(8), 1917–1938. doi:10.1080/14680629.2022.2108883.
[3] Maghool, F., Arulrajah, A., Ghorbani, B., & Horpibulsuk, S. (2022). Strength and permanent deformation properties of demolition wastes, glass, and plastics stabilized with foamed bitumen for pavement bases. Construction and Building Materials, 320, 121213. doi:10.1016/j.conbuildmat.2021.126108.
[4] Brito, N. J. C. O., Dantas Neto, S. A., Rodrigues, P. M. B., & Oliveira, J. C. G. de. (2022). Evaluation of curing time in shear strength of soil-emulsion mixtures with emulsion contents greater than 10%. Matéria (Rio de Janeiro), 27(2), 1-10. doi:10.1590/1517-7076-rmat-2022-0088. (In Portuguese).
[5] Orosa, P., Pérez, I., & Pasandín, A. R. (2022). Evaluation of the shear and permanent deformation properties of cold in-place recycled mixtures with bitumen emulsion using triaxial tests. Construction and Building Materials, 328, 127054. doi:10.1016/j.conbuildmat.2022.127054.
[6] Andavan, S., & Maneesh Kumar, B. (2020). Case study on soil stabilization by using bitumen emulsions - A review. Materials Today: Proceedings, 22(3), 1200–1202. doi:10.1016/j.matpr.2019.12.121.
[7] Kamran, F., Basavarajappa, M., Bala, N., & Hashemian, L. (2021). Laboratory evaluation of stabilized base course using asphalt emulsion and asphaltenes derived from Alberta oil sands. Construction and Building Materials, 283, 122735. doi:10.1016/j.conbuildmat.2021.122735.
[8] Oluyemi-Ayibiowu, B. D. (2019). Stabilization of lateritic soils with asphalt- emulsion. Nigerian Journal of Technology, 38(3), 603. doi:10.4314/njt.v38i3.9.
[9] Alizadeh, A., & Modarres, A. (2019). Mechanical and Microstructural Study of RAP–Clay Composites Containing Bitumen Emulsion and Lime. Journal of Materials in Civil Engineering, 31(2), 4015107. doi:10.1061/(asce)mt.1943-5533.0002583.
[10] Bunga, E. (2018). A model of sandy clay erosion rate stabilized with emulsion asphalt. ARPN Journal of Engineering and Applied Sciences, 13(1), 42-51.
[11] Mignini, C., Cardone, F., & Graziani, A. (2018). Experimental study of bitumen emulsion–cement mortars: mechanical behavior and relation to mixtures. Materials and Structures, 51(6), 149. doi:10.1617/s11527-018-1276-y.
[12] Yaghoubi, E., Ghorbani, B., Saberian, M., van Staden, R., Guerrieri, M., & Fragomeni, S. (2023). Permanent deformation response of demolition wastes stabilised with bitumen emulsion as pavement base/subbase. Transportation Geotechnics, 39. doi:10.1016/j.trgeo.2023.100934.
[13] Barbieri, D. M., Lou, B., Dyke, R. J., Chen, H., Chandra Sahoo, U., Tingle, J. S., & Hoff, I. (2023). Dataset of mechanical properties of coarse aggregates stabilized with traditional and nontraditional additives: Stiffness, deformation, resistance to freezing and stripping. Data in Brief, 46, 1087813. doi:10.1016/j.dib.2022.108781.
[14] EN13286-7. (2007). Unbound and Hydraulically Bound Mixtures - Part 7: Cyclic Load Triaxial Test for Unbound Mixtures. European Committee for Standardization, Brussels, Belgium.
[15] Ghorbani, B., Arulrajah, A., Narsilio, G. A., Horpibulsuk, S., & Buritatum, A. (2023). Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes. Sustainability (Switzerland), 15(3), 2680. doi:10.3390/su15032680.
[16] AG:PT/T053. (2000). Determination of Permanent Deformation and Resilient Modulus Characteristics of Unbound Granular Materialsunder Drained Conditions. AustRoads, Sydney, Australia.
[17] Wang, C., Chazallon, C., Hornych, P., & Braymand, S. (2023). Permanent and resilient deformation behavior of recycled concrete aggregates from different sources, in pavement base and subbase. Road Materials and Pavement Design, 24(9), 2245–2262. doi:10.1080/14680629.2022.2134048.
[18] Medeiros, A. S. de, Santana, C. S. A., & Silva, M. A. V. da. (2023). Permanent Deformation Analysis of Three Tropical Soils at Different Humidities Using Multistage Loading. Journal of Engineering Research, 3(15), 2–17. doi:10.22533/at.ed.3173152308055.
[19] Arulrajah, A., Ghorbani, B., Narsilio, G., Horpibulsuk, S., & Leong, M. (2021). Thermal performance of geothermal pavements constructed with demolition wastes. Geomechanics for Energy and the Environment, 28, 100253. doi:10.1016/j.gete.2021.100253.
[20] Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. W. (2021). Dynamic characterization of recycled glass-recycled concrete blends using experimental analysis and artificial neural network modeling. Soil Dynamics and Earthquake Engineering, 142, 106544. doi:10.1016/j.soildyn.2020.106544.
[21] Lin, B., Zhang, F., Feng, D., Tang, K., & Feng, X. (2017). Accumulative plastic strain of thawed saturated clay under long-term cyclic loading. Engineering Geology, 231, 230–237. doi:10.1016/j.enggeo.2017.09.028.
[22] Salour, F., & Erlingsson, S. (2017). Permanent deformation characteristics of silty sand subgrades from multistage RLT tests. International Journal of Pavement Engineering, 18(3), 236–246. doi:10.1080/10298436.2015.1065991.
[23] M145-91 (2003). Standard specification for classification of soils and soil-aggregate mixtures for highway construction purposes. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[24] Zaroni, M. J., & Santos, R. D. (2021). Tropical soil formation. Empresa Brasileira de Pesquisa Agropecuária, Brasília, Brazil. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/solos-tropicais/formacao-do-solo-tropical (accessed on November 2023). (In Portuguese).
[25] ASTM D422-63. (2007). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States.
[26] ASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[27] ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[28] ASTM D2216-98. (2017). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-98.
[29] ASTM D3967-08. (2016) Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, Pennsylvania, United States. doi:10.1520/D3967-08.
[30] Franco, F. A. C. P. (2023). Multiple-Layer Elastic Analysis Program (MEAP) (Version 2.4.3). DNIT, Brasília, Brazil. Available online: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/medina (accessed on December 2023).
[31] JAMOVI (2023). The JAMOVI Project. Available online: https://www.jamovi.org (accessed on December 2023).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
