Response Reduction Factor for Structures with Significant Irregularities on Different Soil Stratum
Downloads
Doi: 10.28991/CEJ-2024-010-03-07
Full Text: PDF
[2] Brahmavrathan, D., & Arunkumar, C. (2016). Evaluation of Response Reduction Factor of Irregular Reinforced Concrete Framed Structures. Indian Journal of Science and Technology, 9(23), 1–8. doi:10.17485/ijst/2016/v9i23/95981.
[3] Fayed, M. N., Aboul-Nour, L. A., & El-Masry, S. S. (2018). Evaluation of seismic response modification factor of multistory buildings designed according to Egyptian code. IOSR Journal of Mechanical and Civil Engineering, 15(11), 66-68.
[4] Barakat, S. A., Husein Malkawi, A. I., & Al-Shatnawi, A. S. (1997). A Step towards Evaluation of the Seismic Response Reduction Factor in Multistorey Reinforced Concrete Frames. Natural Hazards, 16(1), 65–80. doi:10.1023/A:1007972616511.
[5] Hussain, N., Alam, S., & Mwafy, A. (2024). Developments in Quantifying the Response Factors Required for Linear Analytical and Seismic Design Procedures. Buildings, 14(1), 247. doi:10.3390/buildings14010247
[6] FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, United States.
[7] ATC-40-1. (1996). Seismic Evaluation and Retrofit of Concrete Buildings; Report No. SSC 96-01, Applied Technology Council (ATC), Redwood City, United States.
[8] Fajfar, P., & Fischinger, M. (1988). N2-A Method for Non-linear Seismic Analysis of Regular Buildings. Ninth World Conference on Earthquake Engineering, 2-9 August, 1988, Tokyo, Japan.
[9] Ashwini K. C, & Dr. Y. M. Manjunath. (2017). Comparative Study of Pushover Analysis on RCC Structures. International Journal of Engineering Research & Technology, 6(6), 71–79. doi:10.17577/ijertv6is060075.
[10] Mahesh, U., Pandit, P., & Scholar, P. G. (2020). A Review on Pushover Analysis for Irregular Structures. International Journal of Engineering Science and Computing IJESC, 10(7), 26835.
[11] Elnashai, A. S., & Mwafy, A. M. (2002). Overstrength and force reduction factors of multistorey reinforced-concrete buildings. Structural Design of Tall Buildings, 11(5), 329–351. doi:10.1002/tal.204.
[12] Anagnwstopoulou, V., Zeris, C., & Karayannis, C. (2012). Evaluation of the q Factor of Irregular RC Buildings Designed According to EC8. 15th World Conference on Earthquake Engineering, 24-28 September, 2012, Lisbon, Portugal.
[13] ECP-201. (2012). ECP-201: Egyptian code for calculating loads and forces in structural work and masonry. Housing and Building National Research Center. Ministry of Housing, Utilities and Urban Planning, Cairo, Egypt.
[14] El-Mahdy, O., Hamdy, G., & YASSIN, A. (2023). Performance Based Seismic Design of Two RC High-Rise Buildings. Engineering Research Journal - Faculty of Engineering (Shoubra), 52(2), 101–113. doi:10.21608/erjsh.2023.166943.1096.
[15] Ahmed, M. M. M., Abdo, M. A. B., & Mohamed, W. A. E. W. (2023). Response modification factor evaluation for vertical irregular MRF buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1–15. doi:10.1680/jstbu.22.00146.
[16] Ali, T., Eldin, M. N., & Haider, W. (2023). The Effect of Soil-Structure Interaction on the Seismic Response of Structures Using Machine Learning, Finite Element Modeling and ASCE 7-16 Methods. Sensors, 23(4), 2047. doi:10.3390/s23042047.
[17] Maharjan, S., & Bahadur, K. (2021). Study of Soil-Structure Interaction Effects on Seismic Analysis. Proceedings of 9th IOE Graduate Conference, 12 March, 2021, Lalitpur, Nepal.
[18] Abdelrhman, S. A., Naser, N. E., Sorour, T. M., & Fayed, M. N. The Effect of Soil Structural Interaction on Evaluation of Seismic Response Reduction Factor of Multi-Story Concrete Buildings. Al-Azhar University Civil Engineering Research Magazine (CERM), 43(3), 149-170.
[19] Bapir, B., Abrahamczyk, L., Wichtmann, T., & Prada-Sarmiento, L. F. (2023). Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures. Frontiers in Built Environment, 9, 1120351. doi:10.3389/fbuil.2023.1120351.
[20] Janous, S. El, & Ghoulbzouri, A. El. (2024). Seismic Vulnerability of Irregular Reinforced Concrete Buildings Considering the Soil-structure Interaction. International Journal of Engineering, Transactions A: Basics, 37(1), 104–114. doi:10.5829/ije.2024.37.01a.10.
[21] Rodrigues, H., Varum, H., Aríªde, A., & Costa, A. (2012). Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns. Earthquake Engineering and Engineering Vibration, 11(4), 553–566. doi:10.1007/s11803-012-0141-1.
[22] Requena-Garcia-Cruz, M. V., Bento, R., Durand-Neyra, P., & Morales-Esteban, A. (2022). Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon. Structures, 38, 599–617. doi:10.1016/j.istruc.2022.02.024.
[23] Ghimire, K., & Chaulagain, H. (2021). Common irregularities and its effects on reinforced concrete building response. Structural Mechanics of Engineering Constructions and Buildings, 17(1), 63–73. doi:10.22363/1815-5235-2021-17-1-63-73.
[24] Tomer, S., & Bhandari, M. (2023). Evaluation of Seismic Response of Irregular Buildings: A Review. IOP Conference Series: Earth and Environmental Science, 1110(1), 12012. doi:10.1088/1755-1315/1110/1/012012.
[25] Allena, P., & Chowdary, T. B. (2020). Effect of Irregularities on Seismic Performance of High Rise Structures. IOP Conference Series: Materials Science and Engineering, 998(1), 12064. doi:10.1088/1757-899X/998/1/012064.
[26] ASCE/SEI 7-10. (2000). Minimum design loads for buildings and other structures. American Society of Civil Engineers (ASCE), Reston, United States.
[27] Palanci, M., Demir, A., & Kayhan, A. H. (2021). The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale University Journal of Engineering Sciences, 27(3), 251–263. doi:10.5505/pajes.2020.47936.
[28] Chai, J. C., Miura, N., & Koga, H. (2005). Lateral displacement of ground caused by soil–cement column installation. Journal of Geotechnical and Geoenvironmental Engineering, 131(5), 623-632. doi:10.1061/(ASCE)1090-0241(2005)131:5(623).
[29] Abdel Raheem, S.E., Ahmed, M.M.M., Ahmed, M. M., & Abdel-shafy, A.G.A. (2018). Evaluation of plan configuration irregularity effects on seismic response demands of L-shaped MRF buildings. Bulletin of Earthquake Engineering, 16(9), 3845–3869. doi:10.1007/s10518-018-0319-7.
[30] Joseph, P., & Kuruvilla, R. (2021). Effects of Irregularities on the Seismic Response of a High-Rise Structure in ETABS. International Journal of Engineering Research & Technology, ICART - 2021 Conference Proceedings, Special Issue, 79-83.
[31] Freeman, S. A. (1990). On the correlation of code forces to earthquake demands. Proceedings of 4th US–Japan workshop on improvement of building structural design and construction practices, ATC-15-3 report, Redwood City, United States.
[32] Chaulagain, H., Rodrigues, H., Spacone, E., Guragain, R., Mallik, R., & Varum, H. (2014). Response reduction factor of irregular RC buildings in Kathmandu valley. Earthquake Engineering and Engineering Vibration, 13(3), 455–470. doi:10.1007/s11803-014-0255-8.
[33] HBRC. (2007). Egyptian Code of Practice for Concrete Structures, Housing and Building National Research Center (HBRC), Cairo, Egypt. (In Arabic).
[34] EN 1998-1:2004. (2004). Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.
[35] Maheri, M. R., & Akbari, R. (2003). Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings. Engineering Structures, 25(12), 1505–1513. doi:10.1016/S0141-0296(03)00117-2.
[36] Newmark, N. M., & Hall, W. J. (1969). Seismic design criteria for nuclear reactor facilities. Proceedings of the 4th World conference on Earthquake Engineering, 13-18 January, 1969, Santiago de, Chile.
[37] Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic provisions. Journal of structural Engineering, 117(1), 19-28.
[38] Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172841.
[39] Miranda, E., & Bertero, V. V. (1994). Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra, 10(2), 357–379. doi:10.1193/1.1585778.
[40] Kappos, A. J. (1997). Seismic damage indices for RC buildings: evaluation of concepts and procedures. Progress in Structural Engineering and Materials, 1(1), 78–87. doi:10.1002/pse.2260010113.
[41] Priestley, M. J. N. (2000). Performance based seismic design. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 325–346. doi:10.5459/bnzsee.33.3.325-346.
[42] Mondal, A., Ghosh, S., & Reddy, G. R. (2013). Performance-based evaluation of the response reduction factor for ductile RC frames. Engineering Structures, 56, 1808–1819. doi:10.1016/j.engstruct.2013.07.038.
[43] IBC. (2012). International Building Code. International Code Council, Washington, United States.
[44] Lee, D. G., Cho, S. H., & Ko, H. (2005). Response Modification Factors for Seismic Design of Building Structures in Low Sesimicity Regions. Korea Earthquake Engineering Research Center, Seoul, Korea.
[45] Varum, H. S. A. (2003). Seismic assessment, strengthening and repair of existing buildings. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal.
[46] SAP2000 V-14. (2010). Integrated finite element analysis and design of structures basic analysis reference manual. Computers and structures INC, Berkeley, United States.
[47] Xu, C., Liu, H., Dou, P., Wang, J., Chen, S., & Du, X. (2023). Analysis on kinematic and inertial interaction in liquefiable soil-pile-structure dynamic system. Earthquake Engineering and Engineering Vibration, 22(3), 601-612. doi:10.1007/s11803-023-2190-z.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
