Turbidity Removal Performance of Selected Natural Coagulants for Water Treatment in Colombian Rural Areas

L. Salazar-Gámez, M. Luna-delRisco, Edgar Narváez-Jojoa, R. Salazar-Cano, Diana Rosales-Delgado, David Pinchao, Edson Ivan Santander-Yela, Juan David Cortez-Lopera, Luis Miguel Calderón-Estrada, German Mauricio Enríquez-Apraez, María Camila-Benavides Revelo, Sebastián Delgado-Garcés, L. Rocha-Meneses


Despite the recognized efficiency of natural coagulants, their widespread adoption in the water treatment industry remains low. Our study evaluates the effectiveness of three natural coagulants—Moringa Oleifera, Yausa (Abutilon Insigne Planch), and Breadfruit (Artocarpus Altilis)—in reducing water turbidity levels of 40–50 NTU. Among these, two are native plant species potentially applicable in rural Colombian areas, where there are evident disparities in water infrastructure. This research contributes to the development of these coagulants, exploring their integration with existing water treatment methods, determining their optimal concentrations, and efficiencies in turbidity removal. Our findings reveal significant turbidity removal efficiencies: 88.9% for Moringa Oleifera, 83.3% for Yausa, and 67.2% for Breadfruit. These results indicate the feasibility of these agents as sustainable replacements for traditional chemical coagulants, exhibiting a level of effectiveness alike to that observed in Moringa Oleifera. However, challenges in practical implementation and sustainability, covering technical, environmental, economic, and social aspects, are notable obstacles. The aim of this study is to not only demonstrate the effectiveness of these natural coagulants but also to encourage their broader acceptance and integration into sustainable water treatment practices incorporating two unstudied plant species, such as Yausa and Breadfruit, furthering research to overcome existing challenges.


Doi: 10.28991/CEJ-2024-010-02-020

Full Text: PDF


Water Treatment; Natural Coagulants; Moringa Oleifera; Yausa; Turbidity Removal; Color Removal; Sustainability.


Salem, H. S., Pudza, M. Y., & Yihdego, Y. (2022). Water strategies and water–food Nexus: challenges and opportunities towards sustainable development in various regions of the World. Sustainable Water Resources Management, 8(4), 114. doi:10.1007/s40899-022-00676-3.

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. NPJ Clean Water, 2(1), 15. doi:10.1038/s41545-019-0039-9.

Mishra, R. K. (2023). Fresh Water availability and Its Global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1–78. doi:10.37745/bjmas.2022.0208.

Durán-Sandoval, D., Durán-Romero, G., & Uleri, F. (2023). How Much Food Loss and Waste Do Countries with Problems with Food Security Generate? Agriculture, 13(5), 966. doi:10.3390/agriculture13050966.

Mac Mahon, J. (2022). Water purity and sustainable water treatment systems for developing countries. Water and Climate Change, 115–144, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-323-99875-8.00021-5.

Salehi, M. (2022). Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environment International, 158, 106936. doi:10.1016/j.envint.2021.106936.

Dadebo, D., Obura, D., & Kimera, D. (2023). Hydraulic modeling and prediction of performance for a drinking water supply system towards the achievement of sustainable development goals (SDGs): A system case study from Uganda. Groundwater for Sustainable Development, 22, 100951. doi:10.1016/j.gsd.2023.100951.

Koul, B., Bhat, N., Abubakar, M., Mishra, M., Arukha, A. P., & Yadav, D. (2022). Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals. Water, 14(22), 3751. doi:10.3390/w14223751.

Karnena, M. K., Konni, M., Dwarapureddi, B. K., & Saritha, V. (2022). Blend of natural coagulants as a sustainable solution for challenges of pollution from aquaculture wastewater. Applied Water Science, 12(3), 47. doi:10.1007/s13201-021-01501-6.

Rodríguez, C., García, B., Pinto, C., Sánchez, R., Serrano, J., & Leiva, E. (2022). Water Context in Latin America and the Caribbean: Distribution, Regulations and Prospects for Water Reuse and Reclamation. Water, 14(21), 3589. doi:10.3390/w14213589.

Duque, J. C., García, G. A., Lozano‐Gracia, N., Quiñones, M., & Montoya, K. Y. (2023). Inequality and space in a highly unequal country: What does the literature tell us in the context of Colombia? Regional Science Policy & Practice, 15(9), 2065–2086. doi:10.1111/rsp3.12681.

Irannezhad, M., Ahmadi, B., Liu, J., Chen, D., & Matthews, J. H. (2022). Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustainable Horizons, 1, 100005. doi:10.1016/j.horiz.2021.100005.

Krupińska, I. (2020). Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health. Molecules, 25(3), 641. doi:10.3390/molecules25030641.

Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262, 121267. doi:10.1016/j.jclepro.2020.121267.

Quezada-Moreno, W. F., Quezada-Torres, W. D., Gallardo-Aguilar, I., Proaño-Molina, M., Cevallos-Carvajal, E., Bravo-Zambonino, J., ... & Trávez-Castellano, A. (2020). Natural clarification of cane juice: Technology and quality of hydrolyzed honey. Afinidad, 77(590).

Quijano, J., & Arango, G. J. (1979). The breadfruit from colombia-a detailed chemical analysis. Economic Botany, 33(2), 199–202. doi:10.1007/bf02858288.

Villabona-Ortíz, Á., Tejada-Tovar, C., Ortega-Toro, R., Dager, N. L., & Anibal, M. M. (2022). Natural coagulation as an alternative to raw water treatment. Journal of Water and Land Development, 21–26. doi:10.24425/jwld.2023.143740.

Vargas, M. A., Armas, A. S., Valencia, Z. L., & Benites-Alfaro, E. (2022). Safety in Wastewater Treatment Plants and the use of Natural Coagulants as an Alternative for Turbidity. Chemical Engineering Transactions, 91, 301-306.

Bahrodin, M. B., Zaidi, N. S., Hussein, N., Sillanpää, M., Prasetyo, D. D., & Syafiuddin, A. (2021). Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant. Current Pollution Reports, 7(3), 379–391. doi:10.1007/s40726-021-00191-7.

Jagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I., Ghaleb, A. A. S., Abubakar, S., Lawal, I. M., & Nasara, M. A. (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Engineering Journal, 11(4), 951–960. doi:10.1016/j.asej.2020.01.018.

Nath, A., Mishra, A., & Pande, P. P. (2021). A review natural polymeric coagulants in wastewater treatment. Materials Today: Proceedings, 46, 6113–6117. doi:10.1016/j.matpr.2020.03.551.

Sun, Y., Zhou, S., Chiang, P.-C., & Shah, K. J. (2019). Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus, 2(1), 25–36. doi:10.1016/j.wen.2020.01.001.

Cui, H., Huang, X., Yu, Z., Chen, P., & Cao, X. (2020). Application progress of enhanced coagulation in water treatment. RSC Advances, 10(34), 20231–20244. doi:10.1039/d0ra02979c.

Liu, Z., Wei, H., Li, A., & Yang, H. (2019). Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization. Journal of Environmental Management, 233, 739–747. doi:10.1016/j.jenvman.2018.08.101.

Li, Z.-H., Yuan, L., Gao, S.-X., Wang, L., & Sheng, G.-P. (2019). Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Water Research, 159, 145–152. doi:10.1016/j.watres.2019.05.005.

Aly, S. A., Anderson, W. B., & Huck, P. M. (2020). In-line coagulation assessment for ultrafiltration fouling reduction to treat secondary effluent for water reuse. Water Science and Technology, 83(2), 284–296. doi:10.2166/wst.2020.571.

Zafisah, N. S., Ang, W. L., Mohammad, A. W., Hilal, N., & Johnson, D. J. (2020). Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water. Journal of Water Process Engineering, 33, 101028. doi:10.1016/j.jwpe.2019.101028.

Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural / chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521. doi:10.1016/j.jwpe.2020.101521.

Malkoske, T. A., Bérubé, P. R., & Andrews, R. C. (2020). Coagulation/flocculation prior to low pressure membranes in drinking water treatment: a review. Environmental Science: Water Research & Technology, 6(11), 2993–3023. doi:10.1039/d0ew00461h.

Ahmed, S. F., Mehejabin, F., Momtahin, A., Tasannum, N., Faria, N. T., Mofijur, M., Hoang, A. T., Vo, D.-V. N., & Mahlia, T. M. I. (2022). Strategies to improve membrane performance in wastewater treatment. Chemosphere, 306, 135527. doi:10.1016/j.chemosphere.2022.135527.

Alenazi, M., Hashim, K. S., Hassan, A. A., Muradov, M., Kot, P., & Abdulhadi, B. (2020). Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. IOP Conference Series: Materials Science and Engineering, 888(1), 12064. doi:10.1088/1757-899x/888/1/012064.

Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner production, 262, 121267. doi:10.1016/j.jclepro.2020.121267.

Hadadi, A., Imessaoudene, A., Bollinger, J.-C., Assadi, A. A., Amrane, A., & Mouni, L. (2022). Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water, 14(20), 3324. doi:10.3390/w14203324.

Al-Jadabi, N., Laaouan, M., El Hajjaji, S., Mabrouki, J., Benbouzid, M., & Dhiba, D. (2023). The Dual Performance of Moringa Oleifera Seeds as Eco-Friendly Natural Coagulant and as an Antimicrobial for Wastewater Treatment: A Review. Sustainability, 15(5), 4280. doi:10.3390/su15054280.

Quezada Moreno, W., Cevallos Carvajal, E., Yomara Proaño, M., Medina Litardo, R., Mariela Proaño, P., Quezada Torres, W., Caicedo Álvarez, M., & Muñoz López, C. (2023). Thickening capacity of Cordia lutea Lam mucilage gum in a liquid soap formulation. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 80(599), 133–141. doi:10.55815/418005.

Peña-Guzmán, C., & Ortiz-Gutierrez, B. E. (2022). Evaluation of Three Natural Coagulant from Moringa Oleifera Seed for the Treatment of Synthetic Greywater. Civil Engineering Journal, 8(12), 3842–3853. doi:10.28991/cej-2022-08-12-013.

Garcés, S. D., Revelo, M. C. B., & Plata, L. G. (2019). Evaluation of Yausa as a Natural Coagulant in the treatment of waters for human consumption. Boletin Informativo CEI, 6(2), 104-109.

Rompegading, A. B., Hamza, Arafah, M., Akbar, H., Tolinggi, S., Yani, A., Nur, M., Rijal, S., Fudholi, A., & Irfandi, R. (2023). The Use of Moringa Seed (Moringa oleifera) Extract as a Natural Coagulant to Reduce the Turbidity Level of Worongnge Village River Water. International Journal of Design & Nature and Ecodynamics, 18(1), 169–174. doi:10.18280/ijdne.180120.

Taiwo, A. S., Adenike, K., & Aderonke, O. (2020). Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon, 6(1), e03335. doi:10.1016/j.heliyon.2020.e03335.

Zhao, Q., Huang, A., Wu, G., Guo, Q., Li, M., & Wang, X. (2022). Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers. Food Research International, 159, 111598. doi:10.1016/j.foodres.2022.111598.

Mótyán, J., Tóth, F., & Tőzsér, J. (2013). Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules, 3(4), 923–942. doi:10.3390/biom3040923.

Parmar, N., Singh, A., & Ward, O. P. (2001). Enzyme treatment to reduce solids and improve settling of sewage sludge. Journal of Industrial Microbiology and Biotechnology, 26(6), 383–386. doi:10.1038/sj.jim.7000150.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-020


  • There are currently no refbacks.

Copyright (c) 2024 Lorena Lucía Salazar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.