Turbidity Removal Performance of Selected Natural Coagulants for Water Treatment in Colombian Rural Areas
Abstract
Doi: 10.28991/CEJ-2024-010-02-020
Full Text: PDF
Keywords
References
Salem, H. S., Pudza, M. Y., & Yihdego, Y. (2022). Water strategies and water–food Nexus: challenges and opportunities towards sustainable development in various regions of the World. Sustainable Water Resources Management, 8(4), 114. doi:10.1007/s40899-022-00676-3.
Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. NPJ Clean Water, 2(1), 15. doi:10.1038/s41545-019-0039-9.
Mishra, R. K. (2023). Fresh Water availability and Its Global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1–78. doi:10.37745/bjmas.2022.0208.
Durán-Sandoval, D., Durán-Romero, G., & Uleri, F. (2023). How Much Food Loss and Waste Do Countries with Problems with Food Security Generate? Agriculture, 13(5), 966. doi:10.3390/agriculture13050966.
Mac Mahon, J. (2022). Water purity and sustainable water treatment systems for developing countries. Water and Climate Change, 115–144, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-323-99875-8.00021-5.
Salehi, M. (2022). Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environment International, 158, 106936. doi:10.1016/j.envint.2021.106936.
Dadebo, D., Obura, D., & Kimera, D. (2023). Hydraulic modeling and prediction of performance for a drinking water supply system towards the achievement of sustainable development goals (SDGs): A system case study from Uganda. Groundwater for Sustainable Development, 22, 100951. doi:10.1016/j.gsd.2023.100951.
Koul, B., Bhat, N., Abubakar, M., Mishra, M., Arukha, A. P., & Yadav, D. (2022). Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals. Water, 14(22), 3751. doi:10.3390/w14223751.
Karnena, M. K., Konni, M., Dwarapureddi, B. K., & Saritha, V. (2022). Blend of natural coagulants as a sustainable solution for challenges of pollution from aquaculture wastewater. Applied Water Science, 12(3), 47. doi:10.1007/s13201-021-01501-6.
Rodríguez, C., García, B., Pinto, C., Sánchez, R., Serrano, J., & Leiva, E. (2022). Water Context in Latin America and the Caribbean: Distribution, Regulations and Prospects for Water Reuse and Reclamation. Water, 14(21), 3589. doi:10.3390/w14213589.
Duque, J. C., García, G. A., Lozano‐Gracia, N., Quiñones, M., & Montoya, K. Y. (2023). Inequality and space in a highly unequal country: What does the literature tell us in the context of Colombia? Regional Science Policy & Practice, 15(9), 2065–2086. doi:10.1111/rsp3.12681.
Irannezhad, M., Ahmadi, B., Liu, J., Chen, D., & Matthews, J. H. (2022). Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustainable Horizons, 1, 100005. doi:10.1016/j.horiz.2021.100005.
Krupińska, I. (2020). Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health. Molecules, 25(3), 641. doi:10.3390/molecules25030641.
Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262, 121267. doi:10.1016/j.jclepro.2020.121267.
Quezada-Moreno, W. F., Quezada-Torres, W. D., Gallardo-Aguilar, I., Proaño-Molina, M., Cevallos-Carvajal, E., Bravo-Zambonino, J., ... & Trávez-Castellano, A. (2020). Natural clarification of cane juice: Technology and quality of hydrolyzed honey. Afinidad, 77(590).
Quijano, J., & Arango, G. J. (1979). The breadfruit from colombia-a detailed chemical analysis. Economic Botany, 33(2), 199–202. doi:10.1007/bf02858288.
Villabona-Ortíz, Á., Tejada-Tovar, C., Ortega-Toro, R., Dager, N. L., & Anibal, M. M. (2022). Natural coagulation as an alternative to raw water treatment. Journal of Water and Land Development, 21–26. doi:10.24425/jwld.2023.143740.
Vargas, M. A., Armas, A. S., Valencia, Z. L., & Benites-Alfaro, E. (2022). Safety in Wastewater Treatment Plants and the use of Natural Coagulants as an Alternative for Turbidity. Chemical Engineering Transactions, 91, 301-306.
Bahrodin, M. B., Zaidi, N. S., Hussein, N., Sillanpää, M., Prasetyo, D. D., & Syafiuddin, A. (2021). Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant. Current Pollution Reports, 7(3), 379–391. doi:10.1007/s40726-021-00191-7.
Jagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I., Ghaleb, A. A. S., Abubakar, S., Lawal, I. M., & Nasara, M. A. (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Engineering Journal, 11(4), 951–960. doi:10.1016/j.asej.2020.01.018.
Nath, A., Mishra, A., & Pande, P. P. (2021). A review natural polymeric coagulants in wastewater treatment. Materials Today: Proceedings, 46, 6113–6117. doi:10.1016/j.matpr.2020.03.551.
Sun, Y., Zhou, S., Chiang, P.-C., & Shah, K. J. (2019). Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus, 2(1), 25–36. doi:10.1016/j.wen.2020.01.001.
Cui, H., Huang, X., Yu, Z., Chen, P., & Cao, X. (2020). Application progress of enhanced coagulation in water treatment. RSC Advances, 10(34), 20231–20244. doi:10.1039/d0ra02979c.
Liu, Z., Wei, H., Li, A., & Yang, H. (2019). Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization. Journal of Environmental Management, 233, 739–747. doi:10.1016/j.jenvman.2018.08.101.
Li, Z.-H., Yuan, L., Gao, S.-X., Wang, L., & Sheng, G.-P. (2019). Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Water Research, 159, 145–152. doi:10.1016/j.watres.2019.05.005.
Aly, S. A., Anderson, W. B., & Huck, P. M. (2020). In-line coagulation assessment for ultrafiltration fouling reduction to treat secondary effluent for water reuse. Water Science and Technology, 83(2), 284–296. doi:10.2166/wst.2020.571.
Zafisah, N. S., Ang, W. L., Mohammad, A. W., Hilal, N., & Johnson, D. J. (2020). Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water. Journal of Water Process Engineering, 33, 101028. doi:10.1016/j.jwpe.2019.101028.
Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural / chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521. doi:10.1016/j.jwpe.2020.101521.
Malkoske, T. A., Bérubé, P. R., & Andrews, R. C. (2020). Coagulation/flocculation prior to low pressure membranes in drinking water treatment: a review. Environmental Science: Water Research & Technology, 6(11), 2993–3023. doi:10.1039/d0ew00461h.
Ahmed, S. F., Mehejabin, F., Momtahin, A., Tasannum, N., Faria, N. T., Mofijur, M., Hoang, A. T., Vo, D.-V. N., & Mahlia, T. M. I. (2022). Strategies to improve membrane performance in wastewater treatment. Chemosphere, 306, 135527. doi:10.1016/j.chemosphere.2022.135527.
Alenazi, M., Hashim, K. S., Hassan, A. A., Muradov, M., Kot, P., & Abdulhadi, B. (2020). Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. IOP Conference Series: Materials Science and Engineering, 888(1), 12064. doi:10.1088/1757-899x/888/1/012064.
Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner production, 262, 121267. doi:10.1016/j.jclepro.2020.121267.
Hadadi, A., Imessaoudene, A., Bollinger, J.-C., Assadi, A. A., Amrane, A., & Mouni, L. (2022). Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water, 14(20), 3324. doi:10.3390/w14203324.
Al-Jadabi, N., Laaouan, M., El Hajjaji, S., Mabrouki, J., Benbouzid, M., & Dhiba, D. (2023). The Dual Performance of Moringa Oleifera Seeds as Eco-Friendly Natural Coagulant and as an Antimicrobial for Wastewater Treatment: A Review. Sustainability, 15(5), 4280. doi:10.3390/su15054280.
Quezada Moreno, W., Cevallos Carvajal, E., Yomara Proaño, M., Medina Litardo, R., Mariela Proaño, P., Quezada Torres, W., Caicedo Álvarez, M., & Muñoz López, C. (2023). Thickening capacity of Cordia lutea Lam mucilage gum in a liquid soap formulation. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 80(599), 133–141. doi:10.55815/418005.
Peña-Guzmán, C., & Ortiz-Gutierrez, B. E. (2022). Evaluation of Three Natural Coagulant from Moringa Oleifera Seed for the Treatment of Synthetic Greywater. Civil Engineering Journal, 8(12), 3842–3853. doi:10.28991/cej-2022-08-12-013.
Garcés, S. D., Revelo, M. C. B., & Plata, L. G. (2019). Evaluation of Yausa as a Natural Coagulant in the treatment of waters for human consumption. Boletin Informativo CEI, 6(2), 104-109.
Rompegading, A. B., Hamza, Arafah, M., Akbar, H., Tolinggi, S., Yani, A., Nur, M., Rijal, S., Fudholi, A., & Irfandi, R. (2023). The Use of Moringa Seed (Moringa oleifera) Extract as a Natural Coagulant to Reduce the Turbidity Level of Worongnge Village River Water. International Journal of Design & Nature and Ecodynamics, 18(1), 169–174. doi:10.18280/ijdne.180120.
Taiwo, A. S., Adenike, K., & Aderonke, O. (2020). Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon, 6(1), e03335. doi:10.1016/j.heliyon.2020.e03335.
Zhao, Q., Huang, A., Wu, G., Guo, Q., Li, M., & Wang, X. (2022). Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers. Food Research International, 159, 111598. doi:10.1016/j.foodres.2022.111598.
Mótyán, J., Tóth, F., & Tőzsér, J. (2013). Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules, 3(4), 923–942. doi:10.3390/biom3040923.
Parmar, N., Singh, A., & Ward, O. P. (2001). Enzyme treatment to reduce solids and improve settling of sewage sludge. Journal of Industrial Microbiology and Biotechnology, 26(6), 383–386. doi:10.1038/sj.jim.7000150.
DOI: 10.28991/CEJ-2024-010-02-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Lorena Lucía Salazar

This work is licensed under a Creative Commons Attribution 4.0 International License.