Operation Simulation for a Check Valve Used in High-Performance Systems

Julia A. Soboleva, Abdulmejid M. Kerimov, Shamil Sh. Anudinov, Maxim A. Kocharov

Abstract


This research aims to increase the reliability and safety of pipeline systems by creating an improved model range of Butterfly Check Valves (BCV). Pipes through which working fluids are transported, parts related to shut-off and control valves, control measuring instruments, fasteners, anticorrosion elements, and other structural components are the main elements that make up pipelines. Fittings can be of different types; BCV refers to protective ones. These devices protect pipelines by disconnecting the working line in the event of a sudden change in the transported fluid parameters (pressure, flow direction), resulting in the failure of the entire system. Based on an analysis of the key requirements for valves, namely reliability, tightness of a closed system, ensuring safe operation, and analysis of existing BCVs, the design of the presented valve was created. Improved overall dimensions and tightness, both in the open and closed states, as opposed to the existing analogs, are distinctive features of the developed design of butterfly check valves. To confirm the results, the authors, using the finite element method, calculated the stress–strain state of the structure under normal conditions and with regard to the maximum temperatures of the working fluid. The reliability indicators of the developed elements were also calculated to confirm their operability. As a result, it was concluded that after the developed valves have passed acceptance tests, the research findings will make it possible to increase the reliability and safety of the valve itself and the entire pipeline system by introducing these structures into enterprises.

 

Doi: 10.28991/CEJ-2023-09-12-017

Full Text: PDF


Keywords


Butterfly Check Valve; Pipeline Fittings; Pipeline Systems; Finite Element Method; Calculation of Reliability Indicators.

References


Sotoodeh, K. (2021). A Practical Guide to Piping and Valves for the Oil and Gas Industry. Gulf Professional Publishing, Texas, United States. doi:10.1016/c2020-0-00637-7.

Liu, E. Bin, Tang, H., Zhang, Y. H., Li, D. J., Kou, B., Liu, N., & Azimi, M. (2023). Experiment and numerical simulation of distribution law of water-based corrosion inhibitor in natural gas gathering and transportation pipeline. Petroleum Science, 20(3), 1857–1873. doi:10.1016/j.petsci.2023.01.015.

Lyu, Y., Huang, Q., Liu, L., Zhang, D., Xue, H., Zhang, F., Zhang, H., Li, R., & Wang, Q. (2022). Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation. Energy, 250, 123811. doi:10.1016/j.energy.2022.123811.

Sotoodeh, K. (2021). Piping and Valve Corrosion Study: A Practical Guide to Piping and Valves for the Oil and Gas Industry. Elsevier: Amsterdam, The Netherlands, 585-627. doi:10.1016/b978-0-12-823796-0.00009-x.

Zhou, F., Dong, X. liang, Jiang, W. chun, Wang, X., & Xie, Y. tong. (2023). Contact mechanical behavior and leakage prediction of metal lenticular gaskets in bolt flange joints of ultrahigh pressure pipelines. International Journal of Pressure Vessels and Piping, 206, 105038. doi:10.1016/j.ijpvp.2023.105038.

Mina, D., Karampour, H., & Forcellini, D. (2023). Resilience of HP/HT pipelines to combined seismic and thermal loadings. Ocean Engineering, 275, 114098. doi:10.1016/j.oceaneng.2023.114098.

Zhang, S., Luo, M., Qian, H., Liu, L., Yang, H., Zhang, Y., ... & Zhang, W. (2023). A review of valve health diagnosis and assessment: Insights for intelligence maintenance of natural gas pipeline valves in China. Engineering Failure Analysis, 107581. doi:10.1016/j.engfailanal.2023.107581.

Parisher, R. A., & Rhea, R. A. (2022). Chapter 3 - Pipe Fittings. Pipe Drafting and Design (August 2021), 15-59. Gulf Professional Publishing, Texas, United States. doi:10.1016/b978-0-12-822047-4.00019-4.

Sotoodeh, K. (2021). Butterfly valve applications and design. In A Practical Guide to Piping and Valves for the Oil and Gas Industry, 147–241, Gulf Professional Publishing, Texas, United States. doi:10.1016/b978-0-12-823796-0.00017-9.

Sotoodeh, K. (2021). Subsea valve and actuator standards. In Subsea Valves and Actuators for the Oil and Gas Industry, 37–100, Gulf Professional Publishing, Texas, United States. doi:10.1016/b978-0-323-90605-0.00001-3.

Parisher, R. A., & Rhea, R. A. (2022). Valves. Pipe Drafting and Design, 87-117. Gulf Professional Publishing, Texas, United States. doi:10.1016/b978-0-12-822047-4.00007-8.

Stewart, M. (2016). Fluid flow and pressure drop. Surface Production Operations, 343–470. Gulf Professional Publishing, Texas, United States. doi:10.1016/b978-1-85617-808-2.00006-7.

Zheng, X., Hu, F., Wang, Y., Zheng, L., Gao, X., Zhang, H., You, S., & Xu, B. (2021). Leak detection of long-distance district heating pipeline: A hydraulic transient model-based approach. Energy, 237, 121604. doi:10.1016/j.energy.2021.121604.

Liu, B., Gao, R., Du, X., Wang, Y., Shang, Y., Zhang, Y., Zhao, K., & Li, A. (2022). Study on a check valve for air ducts with a nonmobile guide vane based on a random forest model. Building and Environment, 219, 109243. doi:10.1016/j.buildenv.2022.109243.

Zhang, G., Wang, W. W., Wu, Z. Y., Chen, D. S., Kim, H. D., & Lin, Z. (2023). Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve. Energy, 283, 128543. doi:10.1016/j.energy.2023.128543.

Lu, H., Xi, D., & Qin, G. (2023). Environmental risk of oil pipeline accidents. Science of the Total Environment, 874, 162386. doi:10.1016/j.scitotenv.2023.162386.

Xi, D., Lu, H., Fu, Y., Dong, S., Jiang, X., & Matthews, J. (2023). Carbon dioxide pipelines: A statistical analysis of historical accidents. Journal of Loss Prevention in the Process Industries, 84, 105129. doi:10.1016/j.jlp.2023.105129.

Liang, Q., Peng, C., & Li, X. (2023). A multi-state Semi-Markov model for nuclear power plants piping systems subject to fatigue damage and random shocks under dynamic environments. International Journal of Fatigue, 168, 107448. doi:10.1016/j.ijfatigue.2022.107448.

Yan, Y., & Chai, M. (2020). Sealing failure and fretting fatigue behavior of fittings induced by pipeline vibration. International Journal of Fatigue, 136, 105602. doi:10.1016/j.ijfatigue.2020.105602.

Li, H., Liu, J., Wu, J., Xu, Z., Zhang, X., Zhang, L., & Li, Z. (2021). Grouting sealing method of flow-control speed-down in karst pipelines and its engineering application. Tunnelling and Underground Space Technology, 108, 103695. doi:10.1016/j.tust.2020.103695.

Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). Development of an Algorithm for Automated Evaluation of the Operability of Structural Elements of Shut-off Valves. Proceedings of the 2021 IEEE International Conference, Quality Management, Transport and Information Security, Information Technologies, 257–261. doi:10.1109/ITQMIS53292.2021.9642718.

Tatarkanov, A. A., Alexandrov, I. A., Mikhailov, M. S., & Muranov, A. N. (2021). Algorithmic Approach to the Assessment Automation of the Pipeline Shut-Off Valves Tightness. International Journal of Engineering Trends and Technology, 69(12), 147–162. doi:10.14445/22315381/IJETT-V69I12P218.

Zuev, M., Tatarkanov, A. A., Ivanov, N. Z., Mikhailov, M. S., & Muranov, A. N. (2022). Multiphysics Process Simulation in the Working Area of the Plasma Unit of the Multicomponent Nanocomposite Coating Plant. International Journal of Engineering Trends and Technology, 70(5), 317–327. doi:10.14445/22315381/IJETT-V70I5P235.

Kyriakopoulos, G. L., Aminpour, Y., Yamini, O. A., Movahedi, A., Mousavi, S. H., & Kavianpour, M. R. (2022). Hydraulic performance of Howell–Bunger and butterfly valves used for bottom outlet in large dams under flood hazards. Applied Sciences, 12(21), 10971. doi:10.3390/app122110971.

Hong, B., Li, Y., Li, Y., Gong, J., Yu, Y., Huang, A., & Li, X. (2023). Numerical simulation of solid particle erosion in the gas-liquid flow of key pipe fittings in shale gas fields. Case Studies in Thermal Engineering, 42, 102742. doi:10.1016/j.csite.2023.102742.

Deng, H., Liu, Y., Li, P., Ma, Y., & Zhang, S. (2018). Integrated probabilistic modeling method for transient opening height prediction of check valves in oil-gas multiphase pumps. Advances in Engineering Software, 118, 18–26. doi:10.1016/j.advengsoft.2018.01.003.

Li, W., Zhang, H., & Qu, W. (2021). Stress response of a straight hydraulic pipe under random vibration. International Journal of Pressure Vessels and Piping, 194, 104502. doi:10.1016/j.ijpvp.2021.104502.

Zhang, H., Qin, M., Liao, K., Wang, K., & He, G. (2021). Pipe-soil vibration characteristics of natural gas pipelines during the pigging process. Journal of Natural Gas Science and Engineering, 95, 104148. doi:10.1016/j.jngse.2021.104148.

Kim, N. S., & Jeong, Y. H. (2021). An investigation of pressure build-up effects due to check valve’s closing characteristics using dynamic mesh techniques of CFD. Annals of Nuclear Energy, 152, 107996. doi:10.1016/j.anucene.2020.107996.

Mukataeva, Z., Dinmukhamedova, A., Kabieva, S., Baidalinova, B., Khamzina, S., Zekenova, L., & Aizman, R. (2023). Comparative characteristics of developing morphofunctional features of schoolchildren from different climatic and geographical regions. Journal of Pediatric Endocrinology and Metabolism, 36, 158-166. doi:10.1515/jpem-2022-0474.

Jason, D. D., Fripp, M. L., & Dejesus, O. (2013). Method and apparatus for controlling fluid flow using movable flow diverter assembly. Patent US8616290B2. Available online: https://patents.google.com/patent/US8616290B2/en (accessed on June 2023).

Dirk, S., & Kopp, R. (2007). Service friendly valve for firefighting systems. Patent US20090001309A1. Available online: https://patents.google.com/patent/US20090001309 (accessed on June 2023).

NBS Co Ltd. (2017). A butterfly valve. Kazuhiro C/O Nbs Co. Ltd. Miyairi, Patent EP2751454B1. Available online: https://patents.google.com/patent/EP0459509B1/en (accessed on June 2023).

Dalluge, P. R., & Davis, L. O. (2015). Floating ball valve seal with bellows and c-seal. Patent US8720854B2. Available online: https://patents.google.com/patent/US20110266482A1/en (accessed on June 2023).

Nowell, M. S., Foster, K. J., May, M. E., & Ayres, B. S. (2017). Sealing high pressure flow devices. Patent US10288178B2. Available online: https://patents.google.com/patent/US10591070B2 (accessed on June 2023).

Norrman, J. (2006). Shut-off device for a pipe. Patent US20080121298A1. Available online: https://patents.google.com/patent/US20080121298A1/en (accessed on June 2023).

Semenov, A. B., Kutsbakh, A. A., Muranov, A. N., & Semenov, B. I. (2019). Metallurgy of thixotropic materials: The experience of organizing the processing of structural materials in engineering Thixo and MIM methods. IOP Conference Series: Materials Science and Engineering, 683, 012056. doi:10.1088/1757-899X/683/1/012056.

Zimmerman, S. D., Lukashenko, Y. L., Brusnitsyn, N. A., Kudinov, L. A., & Lukanov, V. M. (2004). Rotary check valve Patent RU2217638C2. Available online: https://www.patentguru.com/RU2217638C2 (accessed on June 2023).


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Julia A. Soboleva, Abdulmejid M. Kerimov, Shamil Sh. Anudinov, Maxim A. Kocharov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message