An Empirical Formula for Assessing the Characteristic Strength of Unreinforced Laterite Stone Masonry
Vol. 10 No. 4 (2024): April
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-04-07
Full Text: PDF
Seini Moussa, H., Djoubissié Denouwé, D., Lawane, A., Pantet, A., Diop, M., & Boko, K. W. (2024). An Empirical Formula for Assessing the Characteristic Strength of Unreinforced Laterite Stone Masonry. Civil Engineering Journal, 10(4), 1113–1124. https://doi.org/10.28991/CEJ-2024-010-04-07
[1] Lawane Gana, A. (2014). Characterization of indurated lateritic materials for better use in housing in Africa. PhD Thesis, University of Le Havre, Le Havre, France. (In French).
[2] Ndzié Mvindi, A. T., Onana, V. L., Ngo'o Ze, A., Ohandja, H. N., & Ekodeck, G. E. (2017). Influence of hydromorphic conditions in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Centre Cameroon), for road construction purposes. Transportation Geotechnics, 12, 70–84. doi:10.1016/j.trgeo.2017.08.003.
[3] Oyelami, C. A., & Van Rooy, J. L. (2016). A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective. Journal of African Earth Sciences, 119, 226–237. doi:10.1016/j.jafrearsci.2016.03.018.
[4] Abhilash, H. N., McGregor, F., Millogo, Y., Fabbri, A., Séré, A. D., Aubert, J. E., & Morel, J. C. (2016). Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso. Construction and Building Materials, 125, 731–741. doi:10.1016/j.conbuildmat.2016.08.082.
[5] Lawane, A., Pantet, A., Vinai, R., & Thomassin, J. H. (2011). Geological and geomechanical study of Dano laterites (Burkina Faso) for use in housing. (In French).
[6] Kasthurba, A. K., Santhanam, M., & Mathews, M. S. (2007). Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India - Part 1: Field studies and profile characterisation. Construction and Building Materials, 21(1), 73–82. doi:10.1016/j.conbuildmat.2005.07.006.
[7] Vasanelli, E., Colangiuli, D., Calia, A., Sbartaí¯, Z. M., & Breysse, D. (2017). Combining non-invasive techniques for reliable prediction of soft stone strength in historic masonries. Construction and Building Materials, 146, 744–754. doi:10.1016/j.conbuildmat.2017.04.146.
[8] Zoungrana, O., Bologo/Traoré, M., Messan, A., Nshimiyimana, P., & Pirotte, G. (2021). The Paradox around the Social Representations of Compressed Earth Block Building Material in Burkina Faso: The Material for the Poor or the Luxury Material? Open Journal of Social Sciences, 9(1), 50–65. doi:10.4236/jss.2021.91004.
[9] Zoungrana, O., Bologo-Traore, M., Hema, C., Nshimiyimana, P., Pirotte, G., & Messan, A. (2020). Sustainable habitat in Burkina Faso: Social trajectories, logics and motivations for the use of compressed earth blocks for housing construction in ouagadougou. WIT Transactions on the Built Environment, 195, 165–172. doi:10.2495/ARC200131.
[10] Ouedraogo, A. L. S.-N., Hema, C., N'guiro, S. M., Nshimiyimana, P., & Messan, A. (2024). Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes. Journal of Minerals and Materials Characterization and Engineering, 12(1), 1–16. doi:10.4236/jmmce.2024.121001.
[11] Nshimiyimana, P., Hema, C., Zoungrana, O., Courard, L., & Messan, A. (2022). Contribution to improving the quality of raw earth habitat in Burkina Faso. NoMaD 2022, 16-17 November, 2022, Montpellier, French. (In French).
[12] Moussa, H. S., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., & Courard, L. (2019). Comparative Study of Thermal Comfort Induced from Masonry Made of Stabilized Compressed Earth Block vs Conventional Cementitious Material. Journal of Minerals and Materials Characterization and Engineering, 7(6), 385–403. doi:10.4236/jmmce.2019.76026.
[13] Hema, C., Ouédraogo, A. L. S. N., Bationo, G. B., Kabore, M., Nshimiyimana, P., & Messan, A. (2024). A field study on thermal acceptability and energy consumption of mixed-mode offices building located in the hot-dry climate of Burkina Faso. Science and Technology for the Built Environment, 30(2), 184–193. doi:10.1080/23744731.2023.2291007.
[14] Kaboré, M., Lawane, A., Sawadogo, C., Lo, M., Messan, A., & Pantet, A. (2019). í‰tudes expérimentales du comportement mécanique sous charges verticales des maçonneries en Blocs de Latérite Taillée (BLT). Afrique SCIENCE, 15(1), 201–213.
[15] NF EN 1996-1-1+A1. (2013). Eurocode 6 - Design of masonry structures - Part 1-1: general rules for reinforced and unreinforced masonry structures. AFNOR Editions, Saint-Denis, France. (In French).
[16] Alili, S. (2013). Technical guide for an operation to rehabilitate the village architectural heritage of Kabylie. Ph.D. Thesis, University of Tizi Ouzou, Tizi Ouzou, Algeria. (In French).
[17] Hendry, A. W., & Malek, M. H. (1986). Characteristic Compressive Strength of Brickwork Walls from Collected Test Results. International Masonry Institute, 7, 15–24.
[18] Lourenço, P. B., & Pina-Henriques, J. (2006). Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers and Structures, 84(29–30), 1977–1989. doi:10.1016/j.compstruc.2006.08.009.
[19] Mann, W. (1982). Statistical evaluation of tests on masonry by potential functions. Sixth international brick masonry conference, 16-19 May, 1982, Rome, Italy.
[20] Engesser, F. (1907). Over long-span arched bridges. Zeitschrift für Architekturs und Ingenieurwesen, 53, 403-440. (In German).
[21] Garzón-Roca, J., Marco, C. O., & Adam, J. M. (2013). Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic. Engineering Structures, 48, 21–27. doi:10.1016/j.engstruct.2012.09.029.
[22] Dymiotis, C., & Gutlederer, B. M. (2002). Allowing for uncertainties in the modelling of masonry compressive strength. Construction and Building Materials, 16(8), 443–452. doi:10.1016/S0950-0618(02)00108-3.
[23] Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering, 19(9), 728–739. doi:10.1061/(asce)0899-1561(2007)19:9(728).
[24] Basha, S. H., & Kaushik, H. B. (2015). Evaluation of Nonlinear Material Properties of Fly Ash Brick Masonry under Compression and Shear. Journal of Materials in Civil Engineering, 27(8), 4014227. doi:10.1061/(asce)mt.1943-5533.0001188.
[25] Llorens, J., Llorens, M., Chamorro, M. A., & Soler, J. (2020). Experimental Behavior of Brick Masonry under Uniaxial Compression on Parallel-to-Face Brick. Single-Leaf Case Study. International Journal of Architectural Heritage, 14(1), 23–37. doi:10.1080/15583058.2018.1503361.
[26] Kandymov, N., Mohd Hashim, N. F., Ismail, S., & Durdyev, S. (2022). Derivation of Empirical Relationships to Predict Cambodian Masonry Strength. Materials, 15(14), 5030. doi:10.3390/ma15145030.
[27] Kumavat, H. R. (2016). An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste. Journal of The Institution of Engineers (India): Series A, 97(3), 199–204. doi:10.1007/s40030-016-0178-7.
[28] Thamboo, J. A., & Dhanasekar, M. (2019). Correlation between the performance of solid masonry prisms and wallettes under compression. Journal of Building Engineering, 22, 429–438. doi:10.1016/j.jobe.2019.01.007.
[29] Dayaratnam, P. (1987). Brick and reinforced brick structures. South Asia Books, Delhi, India.
[30] Chourasia, A., Singhal, S., & Chourasia, A. (2023). Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading. Journal of Structural Integrity and Maintenance, 8(1), 1–11. doi:10.1080/24705314.2022.2142895.
[31] Sajanthan, K., Balagasan, B., & Sathiparan, N. (2019). Prediction of compressive strength of stabilized earth block masonry. Advances in Civil Engineering, 2019. doi:10.1155/2019/2072430.
[32] Caldeira, F. E., Nalon, G. H., Oliveira, D. S. de, Pedroti, L. G., Ribeiro, J. C. L., Ferreira, F. A., & Carvalho, J. M. F. de. (2020). Influence of joint thickness and strength of mortars on the compressive behavior of prisms made of normal and high-strength concrete blocks. Construction and Building Materials, 234. doi:10.1016/j.conbuildmat.2019.117419.
[33] Lawrence, S. J., & Page, A. W. (2008). New Australian standards for masonry in small structures. Proc. 14 IBMAC, Sydney, Australia.
[34] Mojsilović, N., & Stewart, M. G. (2015). Probability and structural reliability assessment of mortar joint thickness in load-bearing masonry walls. Structural Safety, 52, 209–218. doi:10.1016/j.strusafe.2014.02.005.
[35] Sarhat, S. R., & Sherwood, E. G. (2014). The prediction of compressive strength of ungrouted hollow concrete block masonry. Construction and Building Materials, 58, 111–121. doi:10.1016/j.conbuildmat.2014.01.025.
[36] Thaickavil, N. N., & Thomas, J. (2018). Behaviour and strength assessment of masonry prisms. Case Studies in Construction Materials, 8, 23–38. doi:10.1016/j.cscm.2017.12.007.
[37] Fortes, E. S., Parsekian, G. A., & Fonseca, F. S. (2015). Relationship between the Compressive Strength of Concrete Masonry and the Compressive Strength of Concrete Masonry Units. Journal of Materials in Civil Engineering, 27(9), 4014238. doi:10.1061/(asce)mt.1943-5533.0001204.
[38] Rizaee, S., Hagel, M. D., Kaheh, P., & Shrive, N. (2016). Comparison of compressive strength of concrete block masonry prisms and solid concrete prisms. Brick and Block Masonry, CRC Press, Boca Raton, United States. doi:10.1201/b21889-228.
[39] NF EN 771-6 + A1. (2015). Specifications for masonry units - Part 6: natural stone masonry units. AFNOR Editions, Saint-Denis, France. (In French).
[40] NF EN 13373. (2020). Test methods for natural stones - Determination of dimensions and other geometric characteristics AFNOR Editions, Saint-Denis, France. (In French).
[41] NF EN 998-2. (2016). Definitions and specifications of mortars for masonry - Part 2: mortars for mounting masonry units. AFNOR Editions, Saint-Denis, France. (In French).
[42] NF EN 772-16. (2011). Methods of testing masonry elements - Part 16: determination of dimensions. AFNOR Editions, Saint-Denis, France. (In French).
[43] NF EN 772-1 + A1. (2015). Methods of testing masonry units - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).
[44] NF EN 1015-11. (2019). Methods of testing mortars for masonry - Part 11: determination of flexural and compressive strength of hardened mortar. AFNOR Editions, Saint-Denis, France. (In French).
[45] NF EN 1052-1. (1999). Masonry testing methods - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).
[46] PAGE, A. (1981). The Biaxial Compressive Strength of Brick Masonry. Proceedings of the Institution of Civil Engineers, 71(3), 893–906. doi:10.1680/iicep.1981.1825.
[47] Wang, Z., Li, L., Zhou, J., Chen, R., Leng, J., Zhang, H., & Yang, J. (2024). Experimental investigation and calculation method of the interfacial bonding performance of stone masonry reinforced with UHPC. Journal of Building Engineering, 85, 108435. doi:10.1016/j.jobe.2024.108435.
[48] Domède, N., Pons, G., Sellier, A., & Fritih, Y. (2009). Mechanical behaviour of ancient masonry. Materials and Structures/Materiaux et Constructions, 42(1), 123–133. doi:10.1617/s11527-008-9372-z.
[49] Costigan, A., Pavía, S., & Kinnane, O. (2015). An experimental evaluation of prediction models for the mechanical behavior of unreinforced, lime-mortar masonry under compression. Journal of Building Engineering, 4, 283–294. doi:10.1016/j.jobe.2015.10.001.
[50] Zahra, T., Thamboo, J., & Asad, M. (2021). Compressive strength and deformation characteristics of concrete block masonry made with different mortars, blocks and mortar beddings types. Journal of Building Engineering, 38. doi:10.1016/j.jobe.2021.102213.
[51] ílvarez-Pérez, J., Chávez-Gómez, J. H., Terán-Torres, B. T., Mesa-Lavista, M., & Balandrano-Vázquez, R. (2020). Multifactorial behavior of the elastic modulus and compressive strength in masonry prisms of hollow concrete blocks. Construction and Building Materials, 241. doi:10.1016/j.conbuildmat.2020.118002.
[52] Abu-Bakr, M., Mahmood, H. F., Mohammed, A. A., & Ahmed, S. A. (2024). Evaluation of mechanical properties and shear-bond strength of mortar containing natural extract admixture. Construction and Building Materials, 418, 135377. doi:10.1016/j.conbuildmat.2024.135377.
[53] Zhang, P., Fan, S., Liu, Y., Su, C., Hu, J., & Sheikh, S. A. (2024). Axial compressive performance of masonry columns strengthened with ECC jacket and FRP strips. Engineering Structures, 304, 117661. doi:10.1016/j.engstruct.2024.117661.
[54] Corradi, M., Borri, A., & Vignoli, A. (2003). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337. doi:10.1016/S0950-0618(03)00007-2.
[2] Ndzié Mvindi, A. T., Onana, V. L., Ngo'o Ze, A., Ohandja, H. N., & Ekodeck, G. E. (2017). Influence of hydromorphic conditions in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Centre Cameroon), for road construction purposes. Transportation Geotechnics, 12, 70–84. doi:10.1016/j.trgeo.2017.08.003.
[3] Oyelami, C. A., & Van Rooy, J. L. (2016). A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective. Journal of African Earth Sciences, 119, 226–237. doi:10.1016/j.jafrearsci.2016.03.018.
[4] Abhilash, H. N., McGregor, F., Millogo, Y., Fabbri, A., Séré, A. D., Aubert, J. E., & Morel, J. C. (2016). Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso. Construction and Building Materials, 125, 731–741. doi:10.1016/j.conbuildmat.2016.08.082.
[5] Lawane, A., Pantet, A., Vinai, R., & Thomassin, J. H. (2011). Geological and geomechanical study of Dano laterites (Burkina Faso) for use in housing. (In French).
[6] Kasthurba, A. K., Santhanam, M., & Mathews, M. S. (2007). Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India - Part 1: Field studies and profile characterisation. Construction and Building Materials, 21(1), 73–82. doi:10.1016/j.conbuildmat.2005.07.006.
[7] Vasanelli, E., Colangiuli, D., Calia, A., Sbartaí¯, Z. M., & Breysse, D. (2017). Combining non-invasive techniques for reliable prediction of soft stone strength in historic masonries. Construction and Building Materials, 146, 744–754. doi:10.1016/j.conbuildmat.2017.04.146.
[8] Zoungrana, O., Bologo/Traoré, M., Messan, A., Nshimiyimana, P., & Pirotte, G. (2021). The Paradox around the Social Representations of Compressed Earth Block Building Material in Burkina Faso: The Material for the Poor or the Luxury Material? Open Journal of Social Sciences, 9(1), 50–65. doi:10.4236/jss.2021.91004.
[9] Zoungrana, O., Bologo-Traore, M., Hema, C., Nshimiyimana, P., Pirotte, G., & Messan, A. (2020). Sustainable habitat in Burkina Faso: Social trajectories, logics and motivations for the use of compressed earth blocks for housing construction in ouagadougou. WIT Transactions on the Built Environment, 195, 165–172. doi:10.2495/ARC200131.
[10] Ouedraogo, A. L. S.-N., Hema, C., N'guiro, S. M., Nshimiyimana, P., & Messan, A. (2024). Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes. Journal of Minerals and Materials Characterization and Engineering, 12(1), 1–16. doi:10.4236/jmmce.2024.121001.
[11] Nshimiyimana, P., Hema, C., Zoungrana, O., Courard, L., & Messan, A. (2022). Contribution to improving the quality of raw earth habitat in Burkina Faso. NoMaD 2022, 16-17 November, 2022, Montpellier, French. (In French).
[12] Moussa, H. S., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., & Courard, L. (2019). Comparative Study of Thermal Comfort Induced from Masonry Made of Stabilized Compressed Earth Block vs Conventional Cementitious Material. Journal of Minerals and Materials Characterization and Engineering, 7(6), 385–403. doi:10.4236/jmmce.2019.76026.
[13] Hema, C., Ouédraogo, A. L. S. N., Bationo, G. B., Kabore, M., Nshimiyimana, P., & Messan, A. (2024). A field study on thermal acceptability and energy consumption of mixed-mode offices building located in the hot-dry climate of Burkina Faso. Science and Technology for the Built Environment, 30(2), 184–193. doi:10.1080/23744731.2023.2291007.
[14] Kaboré, M., Lawane, A., Sawadogo, C., Lo, M., Messan, A., & Pantet, A. (2019). í‰tudes expérimentales du comportement mécanique sous charges verticales des maçonneries en Blocs de Latérite Taillée (BLT). Afrique SCIENCE, 15(1), 201–213.
[15] NF EN 1996-1-1+A1. (2013). Eurocode 6 - Design of masonry structures - Part 1-1: general rules for reinforced and unreinforced masonry structures. AFNOR Editions, Saint-Denis, France. (In French).
[16] Alili, S. (2013). Technical guide for an operation to rehabilitate the village architectural heritage of Kabylie. Ph.D. Thesis, University of Tizi Ouzou, Tizi Ouzou, Algeria. (In French).
[17] Hendry, A. W., & Malek, M. H. (1986). Characteristic Compressive Strength of Brickwork Walls from Collected Test Results. International Masonry Institute, 7, 15–24.
[18] Lourenço, P. B., & Pina-Henriques, J. (2006). Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers and Structures, 84(29–30), 1977–1989. doi:10.1016/j.compstruc.2006.08.009.
[19] Mann, W. (1982). Statistical evaluation of tests on masonry by potential functions. Sixth international brick masonry conference, 16-19 May, 1982, Rome, Italy.
[20] Engesser, F. (1907). Over long-span arched bridges. Zeitschrift für Architekturs und Ingenieurwesen, 53, 403-440. (In German).
[21] Garzón-Roca, J., Marco, C. O., & Adam, J. M. (2013). Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic. Engineering Structures, 48, 21–27. doi:10.1016/j.engstruct.2012.09.029.
[22] Dymiotis, C., & Gutlederer, B. M. (2002). Allowing for uncertainties in the modelling of masonry compressive strength. Construction and Building Materials, 16(8), 443–452. doi:10.1016/S0950-0618(02)00108-3.
[23] Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering, 19(9), 728–739. doi:10.1061/(asce)0899-1561(2007)19:9(728).
[24] Basha, S. H., & Kaushik, H. B. (2015). Evaluation of Nonlinear Material Properties of Fly Ash Brick Masonry under Compression and Shear. Journal of Materials in Civil Engineering, 27(8), 4014227. doi:10.1061/(asce)mt.1943-5533.0001188.
[25] Llorens, J., Llorens, M., Chamorro, M. A., & Soler, J. (2020). Experimental Behavior of Brick Masonry under Uniaxial Compression on Parallel-to-Face Brick. Single-Leaf Case Study. International Journal of Architectural Heritage, 14(1), 23–37. doi:10.1080/15583058.2018.1503361.
[26] Kandymov, N., Mohd Hashim, N. F., Ismail, S., & Durdyev, S. (2022). Derivation of Empirical Relationships to Predict Cambodian Masonry Strength. Materials, 15(14), 5030. doi:10.3390/ma15145030.
[27] Kumavat, H. R. (2016). An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste. Journal of The Institution of Engineers (India): Series A, 97(3), 199–204. doi:10.1007/s40030-016-0178-7.
[28] Thamboo, J. A., & Dhanasekar, M. (2019). Correlation between the performance of solid masonry prisms and wallettes under compression. Journal of Building Engineering, 22, 429–438. doi:10.1016/j.jobe.2019.01.007.
[29] Dayaratnam, P. (1987). Brick and reinforced brick structures. South Asia Books, Delhi, India.
[30] Chourasia, A., Singhal, S., & Chourasia, A. (2023). Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading. Journal of Structural Integrity and Maintenance, 8(1), 1–11. doi:10.1080/24705314.2022.2142895.
[31] Sajanthan, K., Balagasan, B., & Sathiparan, N. (2019). Prediction of compressive strength of stabilized earth block masonry. Advances in Civil Engineering, 2019. doi:10.1155/2019/2072430.
[32] Caldeira, F. E., Nalon, G. H., Oliveira, D. S. de, Pedroti, L. G., Ribeiro, J. C. L., Ferreira, F. A., & Carvalho, J. M. F. de. (2020). Influence of joint thickness and strength of mortars on the compressive behavior of prisms made of normal and high-strength concrete blocks. Construction and Building Materials, 234. doi:10.1016/j.conbuildmat.2019.117419.
[33] Lawrence, S. J., & Page, A. W. (2008). New Australian standards for masonry in small structures. Proc. 14 IBMAC, Sydney, Australia.
[34] Mojsilović, N., & Stewart, M. G. (2015). Probability and structural reliability assessment of mortar joint thickness in load-bearing masonry walls. Structural Safety, 52, 209–218. doi:10.1016/j.strusafe.2014.02.005.
[35] Sarhat, S. R., & Sherwood, E. G. (2014). The prediction of compressive strength of ungrouted hollow concrete block masonry. Construction and Building Materials, 58, 111–121. doi:10.1016/j.conbuildmat.2014.01.025.
[36] Thaickavil, N. N., & Thomas, J. (2018). Behaviour and strength assessment of masonry prisms. Case Studies in Construction Materials, 8, 23–38. doi:10.1016/j.cscm.2017.12.007.
[37] Fortes, E. S., Parsekian, G. A., & Fonseca, F. S. (2015). Relationship between the Compressive Strength of Concrete Masonry and the Compressive Strength of Concrete Masonry Units. Journal of Materials in Civil Engineering, 27(9), 4014238. doi:10.1061/(asce)mt.1943-5533.0001204.
[38] Rizaee, S., Hagel, M. D., Kaheh, P., & Shrive, N. (2016). Comparison of compressive strength of concrete block masonry prisms and solid concrete prisms. Brick and Block Masonry, CRC Press, Boca Raton, United States. doi:10.1201/b21889-228.
[39] NF EN 771-6 + A1. (2015). Specifications for masonry units - Part 6: natural stone masonry units. AFNOR Editions, Saint-Denis, France. (In French).
[40] NF EN 13373. (2020). Test methods for natural stones - Determination of dimensions and other geometric characteristics AFNOR Editions, Saint-Denis, France. (In French).
[41] NF EN 998-2. (2016). Definitions and specifications of mortars for masonry - Part 2: mortars for mounting masonry units. AFNOR Editions, Saint-Denis, France. (In French).
[42] NF EN 772-16. (2011). Methods of testing masonry elements - Part 16: determination of dimensions. AFNOR Editions, Saint-Denis, France. (In French).
[43] NF EN 772-1 + A1. (2015). Methods of testing masonry units - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).
[44] NF EN 1015-11. (2019). Methods of testing mortars for masonry - Part 11: determination of flexural and compressive strength of hardened mortar. AFNOR Editions, Saint-Denis, France. (In French).
[45] NF EN 1052-1. (1999). Masonry testing methods - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).
[46] PAGE, A. (1981). The Biaxial Compressive Strength of Brick Masonry. Proceedings of the Institution of Civil Engineers, 71(3), 893–906. doi:10.1680/iicep.1981.1825.
[47] Wang, Z., Li, L., Zhou, J., Chen, R., Leng, J., Zhang, H., & Yang, J. (2024). Experimental investigation and calculation method of the interfacial bonding performance of stone masonry reinforced with UHPC. Journal of Building Engineering, 85, 108435. doi:10.1016/j.jobe.2024.108435.
[48] Domède, N., Pons, G., Sellier, A., & Fritih, Y. (2009). Mechanical behaviour of ancient masonry. Materials and Structures/Materiaux et Constructions, 42(1), 123–133. doi:10.1617/s11527-008-9372-z.
[49] Costigan, A., Pavía, S., & Kinnane, O. (2015). An experimental evaluation of prediction models for the mechanical behavior of unreinforced, lime-mortar masonry under compression. Journal of Building Engineering, 4, 283–294. doi:10.1016/j.jobe.2015.10.001.
[50] Zahra, T., Thamboo, J., & Asad, M. (2021). Compressive strength and deformation characteristics of concrete block masonry made with different mortars, blocks and mortar beddings types. Journal of Building Engineering, 38. doi:10.1016/j.jobe.2021.102213.
[51] ílvarez-Pérez, J., Chávez-Gómez, J. H., Terán-Torres, B. T., Mesa-Lavista, M., & Balandrano-Vázquez, R. (2020). Multifactorial behavior of the elastic modulus and compressive strength in masonry prisms of hollow concrete blocks. Construction and Building Materials, 241. doi:10.1016/j.conbuildmat.2020.118002.
[52] Abu-Bakr, M., Mahmood, H. F., Mohammed, A. A., & Ahmed, S. A. (2024). Evaluation of mechanical properties and shear-bond strength of mortar containing natural extract admixture. Construction and Building Materials, 418, 135377. doi:10.1016/j.conbuildmat.2024.135377.
[53] Zhang, P., Fan, S., Liu, Y., Su, C., Hu, J., & Sheikh, S. A. (2024). Axial compressive performance of masonry columns strengthened with ECC jacket and FRP strips. Engineering Structures, 304, 117661. doi:10.1016/j.engstruct.2024.117661.
[54] Corradi, M., Borri, A., & Vignoli, A. (2003). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337. doi:10.1016/S0950-0618(03)00007-2.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
