Monitoring Physiological State of Drivers Using In-Vehicle Sensing of Non-Invasive Signal
Downloads
Doi: 10.28991/CEJ-2024-010-04-014
Full Text: PDF
[2] Hayawi, A. A., & Waleed, J. (2019). Driver's Drowsiness Monitoring and Alarming Auto-System Based on EOG Signals. 2019 2nd International Conference on Engineering Technology and Its Applications, IICETA 2019, 214–218. doi:10.1109/IICETA47481.2019.9013000.
[3] Zainy, M. L. S., Pratama, G. B., Kurnianto, R. R., & Iridiastadi, H. (2023). Fatigue Among Indonesian Commercial Vehicle Drivers: A Study Examining Changes in Subjective Responses and Ocular Indicators. International Journal of Technology, 14(5), 1039–1048. doi:10.14716/ijtech.v14i5.4856.
[4] Zuraida, R., & Abbas, B. S. (2020). The factors influencing fatigue related to the accident of intercity bus drivers in Indonesia. International Journal of Technology, 11(2), 342–352. doi:10.14716/ijtech.v11i2.3792.
[5] Minea, M., Dumitrescu, C. M., & Costea, I. M. (2021). Advanced e-call support based on non-intrusive driver condition monitoring for connected and autonomous vehicles. Sensors, 21(24), 8272. doi:10.3390/s21248272.
[6] Mateos-García, N., Gil-González, A. B., Luis-Reboredo, A., & Pérez-Lancho, B. (2023). Driver Stress Detection from Physiological Signals by Virtual Reality Simulator. Electronics, 12(10), 2179–2189. doi:10.3390/electronics12102179.
[7] Goldsworthy, J., Watling, C. N., Rose, C., & Larue, G. (2024). The effects of distraction on younger drivers: A neurophysiological perspective. Applied Ergonomics, 114, 104–127. doi:10.1016/j.apergo.2023.104147.
[8] Lan, Z., Zhao, J., Liu, P., Zhang, C., Lyu, N., & Guo, L. (2024). Driving fatigue detection based on fusion of EEG and vehicle motion information. Biomedical Signal Processing and Control, 92. doi:10.1016/j.bspc.2024.106031.
[9] Yang, D., Wang, Y., Wei, R., Guan, J., Huang, X., Cai, W., & Jiang, Z. (2024). An efficient multi-task learning CNN for driver attention monitoring. Journal of Systems Architecture, 148, 103085. doi:10.1016/j.sysarc.2024.103085.
[10] Wang, Z., Yang, X., Lu, H., Shan, C., & Wang, W. (2023). Benchmark of Physiological Model Based and Deep Learning Based Remote Photoplethysmography in Automotive Applications. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece. doi:10.1109/icassp49357.2023.10095078.
[11] Gong, Z., Yang, X., Song, R., Han, X., Ren, C., Shi, H., Niu, J., & Li, W. (2024). Heart Rate Estimation in Driver Monitoring System Using Quality-Guided Spectrum Peak Screening. IEEE Transactions on Instrumentation and Measurement, 73. doi:10.1109/TIM.2024.3352710.
[12] Gharamohammadi, A., Pirani, M., Khajepour, A., & Shaker, G. (2023). Multibin Breathing Pattern Estimation by Radar Fusion for Enhanced Driver Monitoring. IEEE Transactions on Instrumentation and Measurement, 73. doi:10.1109/TIM.2023.3345909.
[13] Siam, A. I., Gamel, S. A., & Talaat, F. M. (2023). Automatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniques. Neural Computing and Applications, 35(17), 12891–12904. doi:10.1007/s00521-023-08428-w.
[14] Zeng, X., Wang, F., Wang, B., Wu, C., Liu, K. J. R., & Au, O. C. (2022). In-Vehicle Sensing for Smart Cars. IEEE Open Journal of Vehicular Technology, 3, 221–242. doi:10.1109/OJVT.2022.3174546.
[15] Choi, Y., Han, S. I., Kong, S. H., & Ko, H. (2016). Driver status monitoring systems for smart vehicles using physiological sensors: A safety enhancement system from automobile manufacturers. IEEE Signal Processing Magazine, 33(6), 22-34. doi:10.1109/MSP.2016.2602095.
[16] Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537. doi:10.1007/s13246-020-00853-8.
[17] Jung, S. J., Shin, H. S., & Chung, W. Y. (2014). Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intelligent Transport Systems, 8(1), 43–50. doi:10.1049/iet-its.2012.0032.
[18] Meteier, Q., Capallera, M., Ruffieux, S., Angelini, L., Abou Khaled, O., Mugellini, E., Widmer, M., & Sonderegger, A. (2021). Classification of Drivers' Workload Using Physiological Signals in Conditional Automation. Frontiers in Psychology, 12, 1–18. doi:10.3389/fpsyg.2021.596038.
[19] Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.
[20] Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert Versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.
[21] Mathissen, M., Hennes, N., Faller, F., Leonhardt, S., & Teichmann, D. (2022). Investigation of Three Potential Stress Inducement Tasks During On-Road Driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4823–4832. doi:10.1109/TITS.2021.3112811.
[22] Aswathi, C. D., Mathew, N. A., Riyas, K. S., & Jose, R. (2021). Comparison of Machine Learning Algorithms for Heart Rate Variability Based Driver Drowsiness Detection. 2021 2nd Global Conference for Advancement in Technology, GCAT 2021, 1–7. doi:10.1109/GCAT52182.2021.9587733.
[23] Arefnezhad, S., Eichberger, A., Frühwirth, M., Kaufmann, C., Moser, M., & Koglbauer, I. V. (2022). Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness Using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals. Energies, 15(2), 480. doi:10.3390/en15020480.
[24] Ebrahimian, S., Nahvi, A., Tashakori, M., Salmanzadeh, H., Mohseni, O., & Leppänen, T. (2022). Multi-Level Classification of Driver Drowsiness by Simultaneous Analysis of ECG and Respiration Signals Using Deep Neural Networks. International Journal of Environmental Research and Public Health, 19(17), 10736. doi:10.3390/ijerph191710736.
[25] Hu, X., & Lodewijks, G. (2020). Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. Journal of Safety Research, 72(April), 173–187. doi:10.1016/j.jsr.2019.12.015.
[26] Lemkaddem, A., Delgado-Gonzalo, R., Turetken, E., Dasen, S., Moser, V., Gressum, C., Sola, J., Ferrario, D., & Verjus, C. (2018). Multi-modal driver drowsiness detection: A feasibility study. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, United States. doi:10.1109/bhi.2018.8333357.
[27] Stephenson, A. C., Willis, R., & Alford, C. (2021). Using in-seat electrical potential sensors for non-contact monitoring of heart rate, heart rate variability, and heart rate recovery. International Journal of Psychophysiology, 169, 1–10. doi:10.1016/j.ijpsycho.2021.08.005.
[28] Guettas, A., Ayad, S., & Kazar, O. (2019). Driver state monitoring system: A review. ACM International Conference Proceeding Series, 28, 1-7. doi:10.1145/3372938.3372966.
[29] Warnecke, J. M., Ganapathy, N., Koch, E., Dietzel, A., Flormann, M., Henze, R., & Deserno, T. M. (2022). Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors, 22(11), 1–12. doi:10.3390/s22114198.
[30] Priya, J., Reshmi, T. S., Gunasekaran, M. (2020). SSW: Smart Steering Wheel for Real-Time Heart Rate Monitoring of Drivers. International Journal of Innovative Technology and Exploring Engineering, 9(4), 3040–3043. doi:10.35940/ijitee.d1896.029420.
[31] Leonhardt, S., Leicht, L., & Teichmann, D. (2018). Unobtrusive vital sign monitoring in automotive environments”A review. Sensors , 18(9), 1–38. doi:10.3390/s18093080.
[32] Hejjel, L. (2004). Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability analysis: To do or not to do? Medical Science Monitor, 10(1), 6– 13.
[33] Kim, J. K., & Ahn, J. M. (2019). Digital IIR filters for heart rate variability; a comparison between Butterworth and Elliptic filters. International Journal of Scientific and Technology Research, 8(12), 3509–3513.
[34] Pichot, V., Roche, F., Celle, S., Barthélémy, J. C., & Chouchou, F. (2016). HRV analysis: A free software for analyzing cardiac autonomic activity. Frontiers in Physiology, 7(NOV), 1–15. doi:10.3389/fphys.2016.00557.
[35] Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE - Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi:10.1111/j.1540-8159.2010.02841.x.
[36] van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 368–378. doi:10.1016/j.trf.2019.09.015.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
