Prediction of the Dynamic Properties of Concrete Using Artificial Neural Networks

Amjad A. Yasin


This study explores how dynamic characteristics of concrete, such as dynamic shear modulus, dynamic modulus of elasticity, and dynamic Poisson's ratio, affect stability and performance in civil engineering applications. Traditional testing procedures, which include the time-consuming and costly process of mixing and casting specimens, are both time-consuming and costly. The primary objective of this research is to improve efficiency by using Artificial Neural Networks (ANNs) and regression analysis to predict the dynamic properties of concrete, providing a machine-learning-based alternative to traditional experimental methodologies. A set of 72 concrete specimens was methodically built and evaluated, with compressive strengths of 50 MPa, aspect ratios ranging from 1 to 2.5, and an average density of 2400 kg/m3. An input dataset and ANN targets were built using these samples. The ANN model, which used cutting-edge deep learning techniques, went through extensive training, validation, and testing, as well as statistical regression analysis. A comparison shows that the predicted dynamic modulus of elasticity and shear modulus using both ANN and regression approaches nearly match the experimental values, with a maximum error of 5%. Despite good forecasts for the dynamic Poisson's ratio, errors of up to 20% were detected on occasion, which were attributed to sample shape variations.


Doi: 10.28991/CEJ-2024-010-01-016

Full Text: PDF


Concrete; Dynamic properties; Artificial Neural Networks; Regression Analysis.


Kasopa, E., Chen, X., Yao, G., & Zhao, X. (2023). Dynamic Behavior of Concrete: A Review. International Journal for Research in Applied Science & Engineering Technology, 11(3), 294–304. doi:10.22214/ijraset.2023.49358.

Cui, J., Guan, X., Shi, Y., & Li, Z. (2023). A high-fidelity constitutive model considering hydrostatic damage for predictions of high dynamic properties of concrete structures. Computers & Structures, 287(ue15). doi:10.1016/j.compstruc.2023.107115.

Gonov, M. E., Balandin, V. V., Bragov, A. M., & Konstantinov, A. Y. (2023). Study of the Dynamic Properties of Reinforced Concrete under High-Speed Compression. Sixty Shades of Generalized Continua. Advanced Structured Materials, 170. Springer, Cham, Switzerland. doi:10.1007/978-3-031-26186-2_18.

Ma, Z., Ma, C., Du, C., Zhang, S., Zhang, H., Zhang, X., Zhang, X., Wang, J., Tian, M., & Wang, Y. (2023). Research on dynamic mechanical properties of polypropylene fiber-modified rubber foamed concrete. Construction and Building Materials, 404, 10. doi:10.1016/j.conbuildmat.2023.133282.

Ivanchev, I. (2022). Experimental determination of dynamic modulus of elasticity of concrete with ultrasonic pulse velocity method and ultrasonic pulse echo method. IOP Conference Series: Materials Science and Engineering, 1252(1), 012018. doi:10.1088/1757-899x/1252/1/012018.

Wang, Z., Gao, Z., Wang, Y., Cao, Y., Wang, G., Liu, B., & Wang, Z. (2015). A new dynamic testing method for elastic, shear modulus and Poisson’s ratio of concrete. Construction and Building Materials, 100, 129–135. doi:10.1016/j.conbuildmat.2015.09.060.

Hajjeh, R. H., El-Sahawneh, E. I., Yasin, A. A., & Aw Wad, T. M. (2013). Determination of Dynamic Physical Properties of High Strength Concrete Using Ultrasonic Tester. International Journal of Multidisciplinary Research & Advances in Engineering, 5(II), 137–148.

Guo, L., Guo, R., Yan, Y., Zhang, Y., Wang, Z., & Mu, Y. (2022). Dynamic Compression Mechanical Properties of Polyoxymethylene-Fiber-Reinforced Concrete. Materials, 15(21), 7784. doi:10.3390/ma15217784.

Zhao, Z. (2021). Dynamic Properties Test and Constitutive Relation Study of Lightweight Aggregate Concrete under Uniaxial Compression. Advances in Materials Science and Engineering, 2021. doi:10.1155/2021/2678952.

Trifone, L. (2017). A study of the correlation between static and dynamic modulus of elasticity on different concrete mixes. Master Thesis, West Virginia University, Morgantown, United States.

Shen, D. J., & Lu, X. L. (2008). Experimental study on dynamic compressive properties of microconcrete under different strain rate. The 14th World Conference on Earthquake Engineering, 12-17 October, Beijing, China.

Wang, H., Liu, K., & Zhang, Q. (2021). Dynamic deformation and fracturing properties of concrete under biaxial confinements. EPJ Web of Conferences, 250, 06008. doi:10.1051/epjconf/202125006008.

Chen, H. J., Huang, C. H., & Tang, C. W. (2010). Dynamic properties of lightweight concrete beams made by sedimentary lightweight aggregate. Journal of Materials in Civil Engineering, 22(6), 599-606. doi:10.1061/(ASCE)MT.1943-5533.0000061.

Wang, H. T., & Wang, L. C. (2013). Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 38, 1146-1151. doi:10.1016/j.conbuildmat.2012.09.016.

Zhang, N., Zhou, J., & Ma, G. Wei. (2020). Dynamic Properties of Strain-Hardening Cementitious Composite Reinforced with Basalt and Steel Fibers. International Journal of Concrete Structures and Materials, 14(1), 44. doi:10.1186/s40069-020-00415-y.

Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1145591.

Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics (Switzerland), 10(21), 2689. doi:10.3390/electronics10212689.

Ramzi, S., Moradi, M. J., & Hajiloo, H. (2023). The Study of the Effects of Supplementary Cementitious Materials (SCMs) on Concrete Compressive Strength at High Temperatures Using Artificial Neural Network Model. Buildings, 13(5), 1337. doi:10.3390/buildings13051337.

Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.

Pal, P. (2019). Dynamic poisson’s ratio and modulus of elasticity of pozzolana Portland cement concrete. International Journal of Engineering and Technology Innovation, 9(2), 131-144.

Habib, A., Yildirm, U., & Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246. doi:10.1016/j.conbuildmat.2020.118502.

Al-Masoodi, A. H. H., Kawan, A., Kasmuri, M., Hamid, R., & Khan, M. N. N. (2016). Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Construction and Building Materials, 104, 247–262. doi:10.1016/j.conbuildmat.2015.12.037.

Abu-Faraj, M., Al-Hyari, A., & Alqadi, Z. (2022). Experimental Analysis of Methods Used to Solve Linear Regression Models. Computers, Materials & Continua, 72(3), 5699–5712. doi:10.32604/cmc.2022.027364.

Mirbod, M., & Shoar, M. (2022). Intelligent Concrete Surface Cracks Detection using Computer Vision, Pattern Recognition, and Artificial Neural Networks. Procedia Computer Science, 217, 52–61. doi:10.1016/j.procs.2022.12.201.

Miao, P., Yokota, H., & Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19(4), 475–489. doi:10.1080/15732479.2021.1951778.

Sun, B., Ping, Y., Zhu, Z., Jiang, Z., & Wu, N. (2020). Experimental Study on the Dynamic Mechanical Properties of Large-Diameter Mortar and Concrete Subjected to Cyclic Impact. Shock and Vibration, 2020, 9. doi:10.1155/2020/8861197.

González-Pérez, C. A., & De-La-colina, J. (2022). Determination of Mass Properties in Floor Slabs from the Dynamic Response Using Artificial Neural Networks. Civil Engineering Journal (Iran), 8(8), 1549–1564. doi:10.28991/CEJ-2022-08-08-01.

Asteris, P. G., & Nguyen, T.-A. (2022). Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network. Journal of Science and Transport Technology, 2(2), 1–12. doi:10.58845/jstt.utt.2022.en.2.2.1-12.

T Tuhta, S. E. R. T. A. C., & Günday, F. (2020). Dynamic Parameters Determination of Concrete Terrace Wall with System Identification Using ANN. JournalNX- A Multidisciplinary Peer Reviewed Journal, 6(9), 194-202.

Abdulabbas, Z. H., & Al Asadi, L. A. R. (2021). Calculating Dynamic Strengths of Concrete Subjected to Impact Load. Key Engineering Materials, 895, 12–19. doi:10.4028/

Habib, A., & Yildirim, U. (2022). Estimating mechanical and dynamic properties of rubberized concrete using machine learning techniques: a comprehensive study. Engineering Computations, 39(8), 3129–3178. doi:10.1108/ec-09-2021-0527.

Wang, R., Cao, Z., Li, Y., Shi, Q., & Zhang, Y. (2022, January). Effect of loading rate on dynamic properties of plastic concrete under triaxial loading. MEMAT 2022; 2nd International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology, 7-9 January, 2022, Guilin, China.

Congro, M., Monteiro, V. M. de A., Brandão, A. L. T., Santos, B. F. do., Roehl, D., & Silva, F. de A. (2021). Prediction of the residual flexural strength of fiber reinforced concrete using artificial neural networks. Construction and Building Materials, 303, 2021. doi:10.1016/j.conbuildmat.2021.124502.

Thirumalai Raja, K., Jayanthi, N., Leta Tesfaye, J., Nagaprasad, N., Krishnaraj, R., & Kaushik, V. S. (2022). Using an Artificial Neural Network to Validate and Predict the Physical Properties of Self-Compacting Concrete. Advances in Materials Science and Engineering, 2022, 1–10. doi:10.1155/2022/1206512.

Hiew, S. Y., Teoh, K. Bin, Raman, S. N., Kong, D., & Hafezolghorani, M. (2023). Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy. Engineering Structures, 277, 115447. doi:10.1016/j.engstruct.2022.115447.

Abdulla, N. A. (2022). Application of artificial neural networks for prediction of concrete properties. Magazine of Civil Engineering, 110(2), 11007. doi:10.34910/MCE.110.7.

ASTM C597-22. (2023). Standard Test Method for Pulse Velocity through Concrete. (2022). ASTM International, Pennsylvania, United States. doi:10.1520/C0597-22.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-016


  • There are currently no refbacks.

Copyright (c) 2024 Amjad Abed Yasin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.