Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties
Abstract
Doi: 10.28991/CEJ-2024-010-03-010
Full Text: PDF
Keywords
References
Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49. doi:10.1016/j.cemconres.2018.05.006.
Saruhan, V., Keskinateş, M., & Felekoğlu, B. (2022). A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Construction and Building Materials, 337, 127629. doi:10.1016/j.conbuildmat.2022.127629.
Zhang, J., Wang, J., Dong, S., Yu, X., & Han, B. (2019). A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing, 125, 105533. doi:10.1016/j.compositesa.2019.105533.
Beersaerts, G., Hertel, T., Lucas, S., & Pontikes, Y. (2023). Promoting the use of Fe-rich slag in construction: Development of a hybrid binder for 3D printing. Cement and Concrete Composites, 138, 104959. doi:10.1016/j.cemconcomp.2023.104959.
Dey, D., Srinivas, D., Panda, B., Suraneni, P., & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 340, 130749. doi:10.1016/j.jclepro.2022.130749.
Panda, B., & Tan, M. J. (2019). Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Materials Letters, 237, 348–351. doi:10.1016/j.matlet.2018.11.131.
Rubio, M., Sonebi, M., & Amziane, S. (2017). 3D printing of fibre cement-based materials: fresh and rheological performances. Academic Journal of Civil Engineering, 35(2), 480-488. doi:10.26168/icbbm2017.74.
Yu, Q., Zhu, B., Li, X., Meng, L., Cai, J., Zhang, Y., & Pan, J. (2023). Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. Journal of Building Engineering, 72, 106621. doi:10.1016/j.jobe.2023.106621.
Xu, Z., Zhang, D., Li, H., Sun, X., Zhao, K., & Wang, Y. (2022). Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material. Construction and Building Materials, 339, 127685. doi:10.1016/j.conbuildmat.2022.127685.
Dai, S., Zhu, H., Zhai, M., Wu, Q., Yin, Z., Qian, H., & Hua, S. (2021). Stability of steel slag as fine aggregate and its application in 3D printing materials. Construction and Building Materials, 299, 123938. doi:10.1016/j.conbuildmat.2021.123938.
Liu, J., & Lv, C. (2022). Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review. Polymers, 14(7), 1315. doi:10.3390/polym14071315.
Lesovik, V., Fediuk, R., Amran, M., Alaskhanov, A., Volodchenko, A., Murali, G., Uvarov, V., & Elistratkin, M. (2021). 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers, 9(12), 79. doi:10.3390/fib9120079.
Ungureanu, D., Onuțu, C., Isopescu, D. N., Țăranu, N., Zghibarcea, Ștefan V., Spiridon, I. A., & Polcovnicu, R. A. (2023). A Novel Approach for 3D Printing Fiber-Reinforced Mortars. Materials, 16(13), 4609. doi:10.3390/ma16134609.
Sukontasukkul, P., Maho, B., Komkham, S., Pianfuengfoo, S., Zhang, H. (Johnson), Yoo, D. Y., Tangchirapat, W., Sae-Long, W., Limkatanyu, S., & Chindaprasirt, P. (2023). Precise determination of initial printable time for cement mortar 3D printing using a derivative method. Rapid Prototyping Journal, 29(9), 1888–1903. doi:10.1108/RPJ-03-2023-0087.
Sukontasukkul, P., Panklum, K., Maho, B., Banthia, N., Jongvivatsakul, P., Imjai, T., Sata, V., Limkatanyu, S., & Chindaprasirt, P. (2022). Effect of synthetic microfiber and viscosity modifier agent on layer deformation, viscosity, and open time of cement mortar for 3D printing application. Construction and Building Materials, 319. doi:10.1016/j.conbuildmat.2021.126111.
Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. doi:10.1016/j.cemconres.2006.01.010.
Guerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of steel and macro-synthetic fibers on concrete properties. Fibers, 6(3), 47. doi:10.3390/fib6030047.
Dai, P., Lyu, Q., Zong, M., & Zhu, P. (2024). Effect of waste plastic fibers on the printability and mechanical properties of 3D-printed cement mortar. Journal of Building Engineering, 83, 108439. doi:10.1016/j.jobe.2024.108439.
Shakor, P., Nejadi, S., & Paul, G. (2019). A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar. Materials, 12(10), 1708. doi:10.3390/MA12101708.
Kumar Devalla, T., Srinivas, D., Panda, B., & Sitharam, T. G. (2023). Investigation on the flexural and tensile performance of 3D printable cementitious mixtures considering the effect of fiber distribution. Materials Today: Proceedings, 1-6. doi:10.1016/j.matpr.2023.04.081.
Jamnam, S., Maho, B., Techaphatthanakon, A., Ruttanapun, C., Aemlaor, P., Zhang, H., & Sukontasukkul, P. (2022). Effect of graphene oxide nanoparticles on blast load resistance of steel fiber reinforced concrete. Construction and Building Materials, 343, 128139. doi:10.1016/j.conbuildmat.2022.128139.
Panda, B., Chandra Paul, S., & Jen Tan, M. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146–149. doi:10.1016/j.matlet.2017.07.123.
Paul, S. C., Tay, Y. W. D., Panda, B., & Tan, M. J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18(1), 311–319. doi:10.1016/j.acme.2017.02.008.
Ding, T., Xiao, J., Zou, S., & Zhou, X. (2020). Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structures, 254, 112808. doi:10.1016/j.compstruct.2020.112808.
Ma, G., Zhang, J., Wang, L., Li, Z., & Sun, J. (2018). Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer. Smart Materials and Structures, 27(7), 75036. doi:10.1088/1361-665X/aac789.
Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. doi:10.1016/j.resconrec.2008.06.008.
Scrivener, K. L., & Kirkpatrick, R. J. (2008). Innovation in use and research on cementitious material. Cement and Concrete Research, 38(2), 128–136. doi:10.1016/j.cemconres.2007.09.025.
Li, L. G., Xiao, B. F., Cheng, C. M., Xie, H. Z., & Kwan, A. K. H. (2023). Adding Glass Fibers to 3D Printable Mortar: Effects on Printability and Material Anisotropy. Buildings, 13(9), 2295. doi:10.3390/buildings13092295.
Panda, B., & Tan, M. J. (2018). Material properties of 3D printable high-volume slag cement. Proceedings of the First International Conference on 3D Construction Printing (3DcP) in Conjunction with the 6th International Conference on Innovative Production and Construction (IPC 2018), 26-28 November, Melbourne, Australia.
Shakor, P., Nejadi, S., Paul, G., & Gowripalan, N. (2023). Effects of Different Orientation Angle, Size, Surface Roughness, and Heat Curing on Mechanical Behavior of 3D Printed Cement Mortar With/Without Glass Fiber in Powder-Based 3DP. 3D Printing and Additive Manufacturing, 10(2), 330–355. doi:10.1089/3dp.2021.0067.
DOI: 10.28991/CEJ-2024-010-03-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Piti Sukontasukkul, Sila Komkham, Sittisak Jamnam, Hexin Zhang, Kazunori Fujikake, Avirut Puttiwongrak, Chayanon Hansapinyo
This work is licensed under a Creative Commons Attribution 4.0 International License.