Innovative Method for Reinforcing Beams with Different Types of Concrete Using Cross-Rod Steel Bracing Under Pure Torsion
Downloads
Doi: 10.28991/CEJ-2024-010-04-06
Full Text: PDF
[2] Mondal, T. G., & Prakash, S. S. (2016). Nonlinear Finite-Element Analysis of RC Bridge Columns under Torsion with and without Axial Compression. Journal of Bridge Engineering, 21(2), 04015037. doi:10.1061/(asce)be.1943-5592.0000798.
[3] Eom, T. S., Kang, S. M., Park, H. G., Choi, T. W., & Jin, J. M. (2014). Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops. Engineering Structures, 67, 39–49. doi:10.1016/j.engstruct.2014.02.023.
[4] Cao, X., Ren, Y. C., Zhang, L., Jin, L. Z., & Qian, K. (2022). Flexural behavior of ultra-high-performance concrete beams with various types of rebar. Composite Structures, 292, 115674. doi:10.1016/j.compstruct.2022.115674.
[5] Turker, K., & Torun, I. B. (2020). Flexural performance of highly reinforced composite beams with ultra-high performance fiber reinforced concrete layer. Engineering Structures, 219, 110722. doi:10.1016/j.engstruct.2020.110722.
[6] Wang, Q., Song, H. L., Lu, C. L., & Jin, L. Z. (2020). Shear performance of reinforced ultra-high performance concrete rectangular section beams. Structures, 27, 1184–1194. doi:10.1016/j.istruc.2020.07.036.
[7] Cao, X., Ren, Y. C., Qian, K., Fu, F., Deng, X. F., & Zhang, W. J. (2022). Size effect on flexural behavior of ultra-high-performance concrete beams with different reinforcement. Structures, 41, 969–981. doi:10.1016/j.istruc.2022.05.062.
[8] Rahal, K. N. (2013). Torsional strength of normal and high strength reinforced concrete beams. Engineering Structures, 56, 2206–2216. doi:10.1016/j.engstruct.2013.09.005.
[9] Rao, T. D. G., & Seshu, D. R. (2003). Torsion of steel fiber reinforced concrete members. Cement and Concrete Research, 33(11), 1783–1788. doi:10.1016/S0008-8846(03)00174-1.
[10] Okay, F., & Engin, S. (2012). Torsional behavior of steel fiber reinforced concrete beams. Construction and Building Materials, 28(1), 269–275. doi:10.1016/j.conbuildmat.2011.08.062.
[11] Yang, I. H., Joh, C., Lee, J. W., & Kim, B. S. (2013). Torsional behavior of ultra-high performance concrete squared beams. Engineering Structures, 56, 372–383. doi:10.1016/j.engstruct.2013.05.027.
[12] Fehling, E., & Ismail, M. (2012). Experimental investigations on UHPC structural elements subject to pure torsion. Ultra-high Performance Concrete and Nanotechnology in Construction, Kassel University Press, Kassel, Germany.
[13] Karayannis, C. G., & Chalioris, C. E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97. doi:10.1016/j.conbuildmat.2013.04.023.
[14] De Corte, W., & Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667–675. doi:10.1016/j.engstruct.2013.03.032.
[15] Azimi, M., Campos, U. A., Matthews, J. C., Lu, H., Tehrani, F. M., Sun, S., & Alam, S. (2020). Experimental and Numerical Study of Cyclic Performance of Reinforced Concrete Exterior Connections with Rectangular-Spiral Reinforcement. Journal of Structural Engineering, 146(3), 04019219. doi:10.1061/(asce)st.1943-541x.0002506.
[16] Saha, P., & Meesaraganda, L. V. P. (2019). Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading. Construction and Building Materials, 201, 171–185. doi:10.1016/j.conbuildmat.2018.12.192.
[17] Fan, G., Zhao, Z., & Yang, G. (2018). Cyclic Response of Reinforced Concrete Shear Walls with Continuous Rectangular Spiral Stirrups. KSCE Journal of Civil Engineering, 22(5), 1771–1781. doi:10.1007/s12205-017-1134-4.
[18] Ibrahim, A., Askar, H. S., & El-Zoughiby, M. E. (2022). Torsional behavior of solid and hollow concrete beams reinforced with inclined spirals. Journal of King Saud University - Engineering Sciences, 34(5), 309–321. doi:10.1016/j.jksues.2020.10.008.
[19] Shatarat, N., Hunifat, R., Murad, Y., Katkhuda, H., & Abdel Jaber, M. (2020). Torsional capacity investigation of reinforced concrete beams with different configurations of welded and unwelded transverse reinforcement. Structural Concrete, 21(2), 484–500. doi:10.1002/suco.201900054.
[20] Hadhood, A., Gouda, M. G., Agamy, M. H., Mohamed, H. M., & Sherif, A. (2020). Torsion in concrete beams reinforced with GFRP spirals. Engineering Structures, 206, 110174. doi:10.1016/j.engstruct.2020.110174.
[21] Chalioris, C. E., & Karayannis, C. G. (2013). Experimental investigation of RC beams with rectangular spiral reinforcement in torsion. Engineering Structures, 56, 286–297. doi:10.1016/j.engstruct.2013.05.003.
[22] Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2019). Torsional behavior of reinforced concrete beams with corroded reinforcement. Structures, 20, 476–488. doi:10.1016/j.istruc.2019.05.013.
[23] Mohamed, H. M., & Benmokrane, B. (2016). Reinforced Concrete Beams with and without FRP Web Reinforcement under Pure Torsion. Journal of Bridge Engineering, 21(3). doi:10.1061/(asce)be.1943-5592.0000839.
[24] Lopes, S. M. R., & Bernardo, L. F. A. (2014). Cracking and failure mode in HSC hollow beams under torsion. Construction and Building Materials, 51, 163–178. doi:10.1016/j.conbuildmat.2013.10.062.
[25] Zhou, J., Li, C., Feng, Z., & Yoo, D.-Y. (2022). Experimental investigation on torsional behaviors of ultra-high-performance fiber-reinforced concrete hollow beams. Cement and Concrete Composites, 129, 104504. doi:10.1016/j.cemconcomp.2022.104504.
[26] Kwahk, I., Joh, C., & Lee, J. W. (2015). Torsional Behavior Design of UHPC Box Beams Based on Thin-Walled Tube Theory. Engineering, 07(03), 101–114. doi:10.4236/eng.2015.73009.
[27] Muhammed, S. H., & Aziz, A. H. (2020). Using Internal Framed Steel Stiffening Ribs as an Alternative Technique for Torsional Strengthening of RC Box Beams. IOP Conference Series: Materials Science and Engineering, 671(1), 12112. doi:10.1088/1757-899X/671/1/012112.
[28] Iraqi Standard No. 5. (1984). Portland Cement. Central Organization for Standardization and Quality Control, Baghdad, Iraq.
[29] Iraqi Standard Specification No.45. (1984). Aggregate form Natural Sources for Concrete and Building Construction. Central Organization for Standardization and Quality Control, Baghdad, Iraq.
[30] Mures, J. K., Chkheiwer, A. H., & Ahmed, Mazin. A. (2021). Experimental Study on Torsional Behavior of steel Fiber Reinforced Concrete Members under Pure Torsion. IOP Conference Series: Materials Science and Engineering, 1090, 012065. doi:10.1088/1757-899x/1090/1/012065.
[31] ASTM A615/A615M-09b. (2022). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-09B.
[32] ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete (ACI), Michigan, United States.
[33] Gao, S. L. (2006). Study on pseudo strain-hardening and fracture characteristic of polyvinyl alcohol fiber reinforced cementitious composites. Dalian University of Technology, Liaoning, China.
[34] Cao, X., Quan, Y., Ren, Y., Fu, F., Jin, Q., He, D., & Zheng, Y. (2023). Experiment study on reactive powder concrete beams using spirals reinforcement under torsion. Engineering Structures, 290, 116361. doi:10.1016/j.engstruct.2023.116361.
[35] Cao, X., Zhang, W. J., Ren, Y. C., Fu, F., Li, Y. hua, He, D. B., & Zheng, Y. (2023). Torsional capacity of ultra-high-performance concrete beams using rectangle stirrup. Journal of Building Engineering, 69, 106231. doi:10.1016/j.jobe.2023.106231.
[36] Elsheikh, A., Albo-Hassan, A. S., & Al-Zayadi, S. K. (2023). Torsion Improvement of Reinforced Self-Compacting Concrete Beams Using Epoxy Injection and CFRP. Civil Engineering Journal, 9(11), 2706-2724. doi:10.28991/CEJ-2023-09-11-05.
[37] Rao, T. D. G., & Rama Seshu, D. (2005). Analytical model for the torsional response of steel fiber reinforced concrete members under pure torsion. Cement and Concrete Composites, 27(4), 493–501. doi:10.1016/j.cemconcomp.2004.03.006.
[38] Hassan, R. F., Jaber, M. H., Al-Salim, N. H., & Hussein, H. H. (2020). Experimental research on torsional strength of synthetic/steel fiber-reinforced hollow concrete beam. Engineering Structures, 220(110948). doi:10.1016/j.engstruct.2020.110948.
[39] Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Construction and Building Materials, 37, 874–882. doi:10.1016/j.conbuildmat.2012.04.030.
[40] Trung Le, T. (2008). Ultra high performance fibre reinforced concrete paving flags. Ph.D. Thesis, University of Liverpool, Liverpool, United Kingdom.
[41] Behera, G. C., Rao, T. D. G., & Rao, C. B. K. (2016). Torsional behaviour of reinforced concrete beams with ferrocement U-jacketing-Experimental study. Case Studies in Construction Materials, 4, 15–31. doi:10.1016/j.cscm.2015.10.003.
[42] Chalioris, C. E. (2006). Experimental study of the torsion of reinforced concrete members. Structural Engineering and Mechanics, 23(6), 713–737. doi:10.12989/sem.2006.23.6.713.
[43] Deifalla, A., & Ghobarah, A. (2014). Behavior and analysis of inverted T-shaped RC beams under shear and torsion. Engineering Structures, 68, 57–70. doi:10.1016/j.engstruct.2014.02.011.
[44] Zhou, J., Chen, Z., Chen, Y., Song, C., Li, J., & Zhong, M. (2022). Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation. Journal of Building Engineering, 48(103879). doi:10.1016/j.jobe.2021.103879.
[45] Abdullah, A. I., & Lateef, A. M. (2023). Novel Torsional Reinforcement of Concrete Beams Utilizing Cross-Rod Steel Reinforcement. Tikrit Journal of Engineering Sciences, 30(3), 49–58. doi:10.25130/tjes.30.3.6.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
