Geopolymers: Enhancing Environmental Safety and Sustainability in Construction
Downloads
Doi: 10.28991/CEJ-2024-010-10-015
Full Text: PDF
[2] Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H., & Qaidi, S. M. A. (2021). Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability (Switzerland), 13(24), 13502. doi:10.3390/su132413502.
[3] Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. doi:10.1007/s43615-021-00029-w.
[4] Zaid, O., Abdulwahid S., N., Martínez-García, R., de Prado-Gil, J., Mohamed Elhadi, K., & Yosri, A. M. (2024). Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different nanomaterials: A systematic review. Ain Shams Engineering Journal, 15(2). doi:10.1016/j.asej.2023.102373.
[5] Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. doi:10.1016/j.conbuildmat.2014.12.065.
[6] Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Abdalla, A. A., Qaidi, S. M. A., Sor, N. H., & Mohammed, A. A. (2023). Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural Computing and Applications, 35(17), 12453–12479. doi:10.1007/s00521-023-08378-3.
[7] Amin, M., Elsakhawy, Y., Abu el-hassan, K., & Abdelsalam, B. A. (2022). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e00976.
[8] Taher, S. M. S., Saadullah, S. T., Haido, J. H., & Tayeh, B. A. (2021). Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00744.
[9] Sonal, T., Urmil, D., & Darshan, B. (2022). Behaviour of ambient cured prestressed and non-prestressed geopolymer concrete beams. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2021.e00798.
[10] Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105. doi:10.1016/j.cemconcomp.2019.04.006.
[11] Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251. doi:10.1016/j.jclepro.2019.119679.
[12] Wangler, T., & Flatt, R.J. (2019). Correction to: First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018. First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018, DC 2018, RILEM Bookseries, 19. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99519-9_31.
[13] Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability (Switzerland), 13(1), 1–16. doi:10.3390/su13010398.
[14] Ahmed, H. U., Mohammed, A. S., Qaidi, S. M. A., Faraj, R. H., Hamah Sor, N., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. European Journal of Environmental and Civil Engineering, 27(3), 1383–1428. doi:10.1080/19648189.2022.2083022.
[15] Wong, L. S. (2022). Durability Performance of Geopolymer Concrete: A Review. Polymers, 14(5). doi:10.3390/polym14050868.
[16] Ali, I. M., Naje, A. S., & Nasr, M. S. (2020). Eco-friendly chopped tire rubber as reinforcements in fly ash based geopolymer concrete. Global Nest Journal, 22(3), 342–347. doi:10.30955/gnj.003192.
[17] Driouich, A., El Hassani, S. A., S., N., Zmirli, Z., El harfaoui, S., Mydin, M. A. O., Aziz, A., Deifalla, A. F., & Chaair, H. (2023). Mix design optimization of metakaolin-slag-based geopolymer concrete synthesis using RSM. Results in Engineering, 20, 101573. doi:10.1016/j.rineng.2023.101573.
[18] Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282. doi:10.1016/j.jclepro.2020.124543.
[19] Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e00894.
[20] Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T., & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere, 267. doi:10.1016/j.chemosphere.2020.128900.
[21] Tayeh, B. A., Zeyad, A. M., Agwa, I. S., & Amin, M. (2021). Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00673.
[22] Sikder, A., & Saha, P. (2021). Effect of different types of Waste as Binder on Durability Properties of Geopolymer Concrete: A Review. IOP Conference Series: Earth and Environmental Science, 796(1). doi:10.1088/1755-1315/796/1/012018.
[23] Das, S. K., Singh, S. K., Mishra, J., & Mustakim, S. M. (2020). Effect of Rice Husk Ash and Silica Fume as Strength-Enhancing Materials on Properties of Modern Concrete”A Comprehensive Review. Emerging Trends in Civil Engineering. Lecture Notes in Civil Engineering, 61, Springer, Singapore. doi:10.1007/978-981-15-1404-3_21.
[24] Zhang, H. Y., Kodur, V., Wu, B., Yan, J., & Yuan, Z. S. (2018). Effect of temperature on bond characteristics of geopolymer concrete. Construction and Building Materials, 163, 277–285. doi:10.1016/j.conbuildmat.2017.12.043.
[25] Munir, Q., Abdulkareem, M., Horttanainen, M., & Kärki, T. (2023). A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Science of the Total Environment, 865. doi:10.1016/j.scitotenv.2022.161230.
[26] Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., & Dai, J. G. (2023). Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC). Frontiers in Materials, 10. doi:10.3389/fmats.2023.1142237.
[27] Prasittisopin, L., & Sereewatthanawut, I. (2018). Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Frontiers of Structural and Civil Engineering, 12(1), 16–25. doi:10.1007/s11709-016-0373-7.
[28] Tang, J., Liu, X., Chang, X., Ji, X., & Zhou, W. (2022). Elastic geopolymer based on nanotechnology: Synthesis, characterization, properties, and applications. Ceramics International, 48(5), 5965–5971. doi:10.1016/j.ceramint.2021.11.070.
[29] Kejkar, R. B., & Wanjari, S. P. (2021). Feasibility study of commercially viable sustainable aerated geopolymeric foam based block. Materials Today: Proceedings, 45, 4398–4404. doi:10.1016/j.matpr.2020.11.916.
[30] Kotop, M. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Binyahya, A. S. (2021). Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Engineering Journal, 12(4), 3641–3647. doi:10.1016/j.asej.2021.04.022.
[31] Kanagaraj, B., Anand, N., Samuvel Raj, R., & Lubloy, E. (2023). Techno-socio-economic aspects of Portland cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) composite systems: A-State-of-Art-Review. Construction and Building Materials, 398. doi:10.1016/j.conbuildmat.2023.132484.
[32] Jindal, B. B., Alomayri, T., Hasan, A., & Kaze, C. R. (2023). Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material's properties, synthesis, performance, and potential application. Environmental Science and Pollution Research, 30(10), 25299–25324. doi:10.1007/s11356-021-17849-w.
[33] Hassan, A., Arif, M., Shariq, M., Alomayri, T., & Pereira, S. (2023). Fire resistance characteristics of geopolymer concrete for environmental sustainability: a review of thermal, mechanical and microstructure properties. Environment, Development and Sustainability, 25(9), 8975–9010. doi:10.1007/s10668-022-02495-0.
[34] Nagaraju, T. V., Bahrami, A., Azab, M., & Naskar, S. (2023). Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass”A strength performance and sustainability analysis. Frontiers in Materials, 10. doi:10.3389/fmats.2023.1128095.
[35] Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jyothsna, G., Sofi, A., Shanmugam, V., & Thomas, B. S. (2023). A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies in Construction Materials, 19. doi:10.1016/j.cscm.2023.e02244.
[36] Upshaw, M., & Cai, C. S. (2021). Feasibility study of MK-based geopolymer binder for RAC applications: Effects of silica fume and added CaO on compressive strength of mortar samples. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00500.
[37] Luhar, S., Nicolaides, D., & Luhar, I. (2021). Fire resistance behaviour of geopolymer concrete: An overview. Buildings, 11(3), 1–30. doi:10.3390/buildings11030082.
[38] Guades, E. J., Stang, H., Schmidt, J. W., & Fischer, G. (2021). Flexural behavior of hybrid fibre-reinforced geopolymer composites (FRGC)-jacketed RC beams. Engineering Structures, 235. doi:10.1016/j.engstruct.2021.112053.
[39] Ojha, A., & Aggarwal, P. (2022). Fly Ash Based Geopolymer Concrete: a Comprehensive Review. Silicon, 14(6), 2453–2472. doi:10.1007/s12633-021-01044-0.
[40] Singh, N. B. (2018). Fly ash-based geopolymer binder: A future construction material. Minerals, 8(7). doi:10.3390/min8070299.
[41] Pandit, P., Prashanth, S., & Katpady, D. N. (2024). Durability of alkali-activated fly ash-slag concrete-state of art. Innovative Infrastructure Solutions, 9(6), 1-21. doi:10.1007/s41062-024-01530-5.
[42] Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279. doi:10.1016/j.conbuildmat.2021.122496.
[43] Ye, G., Luković, M., Ghiassi, B., Aldin, Z., Prinsse, S., Liu, J., Nedeljković, M., Hordijk, D., Lagendijk, P., Bosman, A., Blom, T., van Leeuwen, M., Huang, Z., Celada, U., Du, C., van den Berg, J., Thijssen, A., & Wijte, S. (2019). Geocon bridge geopolymer concrete mixture for structural applications. Spool, 6(2), 21–26. doi:10.7480/spool.2019.2.4369.
[44] Pawluczuk, E., Kalinowska-Wichrowska, K., Jiménez, J. R., Fernández-Rodríguez, J. M., & Suescum-Morales, D. (2021). Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. Journal of Building Engineering, 44. doi:10.1016/j.jobe.2021.103317.
[45] Ramesh, G. (2021). Geopolymer Concrete: A Review. Indian Journal of Structure Engineering, 1(2), 5–8. doi:10.35940/ijse.a1302.111221.
[46] Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.
[47] Neupane, K. (2018). High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials, 7(2), 15. doi:10.11648/j.am.20180702.11.
[48] Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. doi:10.1016/j.conbuildmat.2017.09.008.
[49] Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. doi:10.1016/j.conbuildmat.2014.01.081.
[50] Biondi, L., Perry, M., McAlorum, J., Vlachakis, C., & Hamilton, A. (2020). Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sensors and Actuators, B: Chemical, 309. doi:10.1016/j.snb.2020.127775.
[51] Ganeshan, M., & Venkataraman, S. (2022). Interface shear strength evaluation of self compacting geopolymer concrete using push-off test. Journal of King Saud University - Engineering Sciences, 34(2), 98–107. doi:10.1016/j.jksues.2020.08.005.
[52] Khedmati, M., Kim, Y. R., & Turner, J. A. (2019). Investigation of the interphase between recycled aggregates and cementitious binding materials using integrated microstructural-nanomechanical-chemical characterization. Composites Part B: Engineering, 158, 218–229. doi:10.1016/j.compositesb.2018.09.041.
[53] Karthik, A., Sudalaimani, K., & Vijaya Kumar, C. T. (2017). Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete. Construction and Building Materials, 149, 338–349. doi:10.1016/j.conbuildmat.2017.05.139.
[54] Aravind, N., Nagajothi, S., & Elavenil, S. (2021). Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams. Construction and Building Materials, 297. doi:10.1016/j.conbuildmat.2021.123785.
[55] Ban, C. C., Khalaf, M. A., Ramli, M., Ahmed, N. M., Ahmad, M. S., Ahmed Ali, A. M., Dawood, E. T., & Ameri, F. (2021). Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 39. doi:10.1016/j.jobe.2021.102290.
[56] Li, W., Luo, Z., Gan, Y., Wang, K., & Shah, S. P. (2021). Nanoscratch on mechanical properties of interfacial transition zones (ITZs) in fly ash-based geopolymer composites. Composites Science and Technology, 214. doi:10.1016/j.compscitech.2021.109001.
[57] Walbrück, K., Maeting, F., Witzleben, S., & Stephan, D. (2020). Natural fiber-stabilized geopolymer foams-A review. Materials, 13(14). doi:10.3390/ma13143198.
[58] Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00733.
[59] Aly, A. M., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. R. (2019). Performance of geopolymer concrete containing recycled rubber. Construction and Building Materials, 207, 136–144. doi:10.1016/j.conbuildmat.2019.02.121.
[60] Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2021). Progress, current thinking and challenges in geopolymer foam concrete technology. Cement and Concrete Composites, 116. doi:10.1016/j.cemconcomp.2020.103886.
[61] Mohajerani, A., Suter, D., Jeffrey-Bailey, T., Song, T., Arulrajah, A., Horpibulsuk, S., & Law, D. (2019). Recycling waste materials in geopolymer concrete. Clean Technologies and Environmental Policy, 21(3), 493–515. doi:10.1007/s10098-018-01660-2.
[62] Mesgari, S., Akbarnezhad, A., & Xiao, J. Z. (2020). Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties. Construction and Building Materials, 236. doi:10.1016/j.conbuildmat.2019.117571.
[63] Xu, Z., Huang, Z., Liu, C., Deng, H., Deng, X., Hui, D., Zhang, X., & Bai, Z. (2021). Research progress on key problems of nanomaterials-modified geopolymer concrete. Nanotechnology Reviews, 10(1), 779–792. doi:10.1515/ntrev-2021-0056.
[64] Luhar, S., Luhar, I., & Shaikh, F. U. A. (2021). Review on performance evaluation of autonomous healing of geopolymer composites. Infrastructures, 6(7). doi:10.3390/infrastructures6070094.
[65] Tempest, B., Snell, C., Gentry, T., Trejo, M., & Isherwood, K. (2015). Manufacture of full-scale geopolymer cement concrete components: A case study to highlight opportunities and challenges. PCI Journal, 60(6), 39–50. doi:10.15554/pcij.11012015.39.50.
[66] Liang, X., & Ji, Y. (2021). Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Applied Sciences, 3(1). doi:10.1007/s42452-020-03985-4.
[67] Liu, C., Huang, X., Wu, Y. Y., Deng, X., Liu, J., Zheng, Z., & Hui, D. (2020). Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnology Reviews, 9(1), 155–169. doi:10.1515/ntrev-2020-0014.
[68] Siddika, A., Hajimohammadi, A., Ferdous, W., & Sahajwalla, V. (2021). Roles of waste glass and the effect of process parameters on the properties of sustainable cement and geopolymer concrete”a state-of-the-art review. Polymers, 13(22). doi:10.3390/polym13223935.
[69] Zhang, H. Y., Qiu, G. H., Kodur, V., & Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cement and Concrete Composites, 106. doi:10.1016/j.cemconcomp.2019.103483.
[70] Figiela, B., Š imonová, H., & Korniejenko, K. (2022). State of the art, challenges, and emerging trends: Geopolymer composite reinforced by dispersed steel fibers. Reviews on Advanced Materials Science, 61(1), 1–15. doi:10.1515/rams-2021-0067.
[71] Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. doi:10.1016/j.conbuildmat.2018.07.111.
[72] Hardjasaputra, H., Cornelia, M., Gunawan, Y., Surjaputra, I. V., Lie, H. A., Rachmansyah, & Pranata Ng, G. (2019). Study of mechanical properties of fly ash-based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 615(1), 012009. doi:10.1088/1757-899X/615/1/012009.
[73] Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. doi:10.1016/j.conbuildmat.2016.05.088.
[74] Siddika, A., Hajimohammadi, A., Mamun, M. A. Al, Alyousef, R., & Ferdous, W. (2021). Waste glass in cement and geopolymer concretes: A review on durability and challenges. Polymers, 13(13), 2071. doi:10.3390/polym13132071.
[75] Luhar, I., & Luhar, S. (2021). Valorization of geopolymer paste containing wastes glass. Research on Engineering Structures and Materials, 7(4), 481–504. doi:10.17515/resm2020.240st1213.
[76] Antoni, A., Shenjaya, S. D., Lupita, M., Santosa, S., Wiyono, D., & Hardjito, D. (2020). Utilization of low sulfur fly ash from circulating fluidized bed combustion burner as geopolymer binder. Civil Engineering Dimension, 22(2), 94–100. doi:10.9744/ced.22.2.93-97.
[77] Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., & Gao, J. (2022). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884–12896. doi:10.1016/j.ceramint.2022.01.161.
[78] Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. doi:10.1016/j.jclepro.2019.03.051.
[79] Panda, B., Singh, G. B., Unluer, C., & Tan, M. J. (2019). Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production, 220, 610–619. doi:10.1016/j.jclepro.2019.02.185.
[80] Beskopylny, A. N., Shcherban', E. M., Stel'makh, S. A., Mailyan, L. R., Meskhi, B., & El'shaeva, D. (2022). The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Applied Sciences (Switzerland), 12(2), 613. doi:10.3390/app12020613.
[81] Sajjad, M., Hu, A., Waqar, A., Falqi, I. I., Alsulamy, S. H., Bageis, A. S., & Alshehri, A. M. (2023). Evaluation of the Success of Industry 4.0 Digitalization Practices for Sustainable Construction Management: Chinese Construction Industry. Buildings, 13(7), 1668. doi:10.3390/buildings13071668.
[82] Waqar, A., Skrzypkowski, K., Almujibah, H., Zagórski, K., Khan, M. B., Zagórska, A., & Benjeddou, O. (2023). Success of Implementing Cloud Computing for Smart Development in Small Construction Projects. Applied Sciences (Switzerland), 13(9), 5713. doi:10.3390/app13095713.
[83] Waqar, A., Othman, I., Skrzypkowski, K., & Ghumman, A. S. M. (2023). Evaluation of Success of Superhydrophobic Coatings in the Oil and Gas Construction Industry Using Structural Equation Modeling. Coatings, 13(3), 526. doi:10.3390/coatings13030526.
[84] Waqar, A., Othman, I., Falqi, I. I., Almujibah, H. R., Alshehri, A. M., Alsulamy, S. H., & Benjeddou, O. (2023). Assessment of Barriers to Robotics Process Automation (RPA) Implementation in Safety Management of Tall Buildings. Buildings, 13(7), 1663. doi:10.3390/buildings13071663.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.