Ensemble Learning Models for Prediction of Punching Shear Strength in RC Slab-Column Connections
Downloads
Doi: 10.28991/CEJ-SP2024-010-01
Full Text: PDF
[2] Nguyen, K. L., Trinh, H. T., & Pham, T. M. (2024). Prediction of punching shear strength in flat slabs: ensemble learning models and practical implementation. Neural Computing and Applications, 36(8), 4207-4228. doi:10.1007/s00521-023-09296-0.
[3] Tran, V. L., & Kim, S. E. (2021). A practical ANN model for predicting the PSS of two-way reinforced concrete slabs. Engineering with Computers, 37(3), 2303–2327. doi:10.1007/s00366-020-00944-w.
[4] ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14). American Concrete Institute (ACI), Michigan, United States.
[5] BS EN 1992-2. (2005). Eurocode 2: Design of concrete structures. Concrete bridges. Design and detailing rules. European Committee for Standardization, Brussels, Belgium.
[6] JSCE NO. 15. (2010). Standard Specifications for Concrete. Structures – 2007: Design. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.
[7] Nguyen, H. D., Truong, G. T., & Shin, M. (2021). Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs. Engineering Structures, 235, 112067. doi:10.1016/j.engstruct.2021.112067.
[8] Mellios, N., Uz, O., & Spyridis, P. (2023). Data-based modeling of the punching shear capacity of concrete structures. Engineering Structures, 275, 115195. doi:10.1016/j.engstruct.2022.115195.
[9] El-said, A., Deifalla, A. F., Yousef, S. E. A. S., El-Sayed, T. A., Tawfik, M., & Ayash, N. M. (2023). Code provisions evaluation for the punching shear capacity of R.C footings without reinforcement for punching shear. Case Studies in Construction Materials, 18, e02182. doi:10.1016/j.cscm.2023.e02182.
[10] Habibi, O., Khaloo, A., & Abdoos, H. (2021). Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements. Scientia Iranica, 28(3 A), 1–27. doi:10.24200/sci.2020.55328.4170.
[11] Khaloo, A., Borhani, M. H., Habibi, O., Tabatabaeian, M., & Askari, S. M. (2024). Experimental and numerical investigation on the performance of GFRP-confined expansive concrete-filled unplasticized polyvinyl chloride tubes. Journal of Thermoplastic Composite Materials, 37(3), 983–1011. doi:10.1177/08927057231190558.
[12] Adeli, H. (2001). Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. doi:10.1111/0885-9507.00219.
[13] Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170–189. doi:10.1016/j.engstruct.2018.05.084.
[14] Thai, H.-T. (2022). Machine learning for structural engineering: A state-of-the-art review. Structures, 38, 448–491. doi:10.1016/j.istruc.2022.02.003.
[15] Elshafey, A. A., Rizk, E., Marzouk, H., & Haddara, M. R. (2011). Prediction of punching shear strength of two-way slabs. Engineering Structures, 33(5), 1742–1753. doi:10.1016/j.engstruct.2011.02.013.
[16] ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-08). American Concrete Institute (ACI), Michigan, United States.
[17] Chetchotisak, P., Ruengpim, P., Chetchotsak, D., & Yindeesuk, S. (2018). Punching Shear Strengths of RC Slab-Column Connections: Prediction and Reliability. KSCE Journal of Civil Engineering, 22(8), 3066–3076. doi:10.1007/s12205-017-0456-6.
[18] Faridmehr, I., Nehdi, M. L., & Hajmohammadian Baghban, M. (2022). Novel informational bat-ANN model for predicting punching shear of RC flat slabs without shear reinforcement. Engineering Structures, 256, 114030. doi:10.1016/j.engstruct.2022.114030.
[19] Naseri Nasab, M., Jahangir, H., Hasani, H., Majidi, M. H., & Khorashadizadeh, S. (2023). Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox. Structures, 50, 1204–1221. doi:10.1016/j.istruc.2023.02.072.
[20] Choi, K. K., Reda Taha, M. M., & Sherif, A. G. (2007). Simplified punching shear design method for slab-column connections using fuzzy learning. ACI Structural Journal, 104(4), 438–447. doi:10.14359/18774.
[21] Akbarpour, H., & Akbarpour, M. (2017). Prediction of punching shear strength of two-way slabs using artificial neural network and adaptive neuro-fuzzy inference system. Neural Computing and Applications, 28(11), 3273–3284. doi:10.1007/s00521-016-2239-2.
[22] Mangalathu, S., Shin, H., Choi, E., & Jeon, J. S. (2021). Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. Journal of Building Engineering, 39, 102300. doi:10.1016/j.jobe.2021.102300.
[23] Cao, M. T. (2023). Advanced soft computing techniques for predicting punching shear strength. Journal of Building Engineering, 79, 107800. doi:10.1016/j.jobe.2023.107800.
[24] Wu, Y., & Zhou, Y. (2023). Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations. Mechanics of Advanced Materials and Structures, 30(15), 3086–3096. doi:10.1080/15376494.2022.2068209.
[25] Ng, W., Minasny, B., de Sousa Mendes, W., & Melo Demattíª, J. A. (2020). The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 6(2), 565–578. doi:10.5194/soil-6-565-2020.
[26] Degtyarev, V. V. (2022). Machine Learning Models for Predicting Bond Strength of Deformed Bars in Concrete. ACI Structural Journal, 119(5), 43–56. doi:10.14359/51734833.
[27] Shahani, N. M., Kamran, M., Zheng, X., Liu, C., & Guo, X. (2021). Application of gradient boosting machine learning algorithms to predict uniaxial compressive strength of soft sedimentary rocks at Thar coalfield. Advances in Civil Engineering, 2021, 1–19. doi:10.1155/2021/2565488.
[28] Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost Classifier with other Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(11), 738–748. doi:10.14569/IJACSA.2020.0111190.
[29] Liu, Y., Lyu, C., Khadka, A., Zhang, W., & Liu, Z. (2020). Spatio-Temporal Ensemble Method for Car-Hailing Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5328–5333. doi:10.1109/TITS.2019.2948790.
[30] Cai, W., Wei, R., Xu, L., & Ding, X. (2022). A method for modelling greenhouse temperature using gradient boost decision tree. Information Processing in Agriculture, 9(3), 343–354. doi:10.1016/j.inpa.2021.08.004.
[31] Shangguan, Q., Fu, T., Wang, J., Fang, S., & Fu, L. (2022). A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Accident Analysis and Prevention, 164, 106500. doi:10.1016/j.aap.2021.106500.
[32] Xia, Y., He, L., Li, Y., Liu, N., & Ding, Y. (2020). Predicting loan default in peer-to-peer lending using narrative data. Journal of Forecasting, 39(2), 260–280. doi:10.1002/for.2625.
[33] Sih, N.-S. (1957). Shearing Strength of Reinforced Concrete Slabs. Journal of the Structural Division, 83(1), 29–58. doi:10.1061/jsdeag.0000081.
[34] Kinnunen, S., & Nylander, H. S. E. (1960). Punching of concrete slabs without shear reinforcement. Elander, Mölnlycke, Sweden.
[35] Mowrer, R. D., & Vanderbilt, M. D. (1967). Shear Strength of Lightweight Aggregate Reinforced Concrete Flat Plates. ACI Journal Proceedings, 64(11). doi:10.14359/7601.
[36] Hanson, N. W., & Hanson, J. M. (1968). Shear and moment transfer between concrete slabs and columns. Portland Cement Association, Research and Development Laboratories, Chicago, United States.
[37] Kinnunen S, Nylander H, T. P. (1978). Investigations on punching at the division of building statics and structural engineering. Nordisk Betong, 3, 25–27.
[38] Regan, P., Walker, P., & Zakaria, K. (1979). Tests of reinforced concrete flat slabs, CIRIA Project No. RP 220. Polytechnic of Central London, London, United Kingdom.
[39] Rankin, G. I. B., & Long, A. E. (2019). Punching strength of conventional slab-column specimens. Engineering Structures, 178(2), 37–54. doi:10.1016/j.engstruct.2018.10.014.
[40] Gardner, N. J. (1990). Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength. ACI Structural Journal, 87(1), 66–71. doi:10.14359/2932.
[41] Lovrovich, J. S., & McLean, D. I. (1990). Punching shear behavior of slabs with varying span-depth ratios. ACI Structural Journal, 87(5), 507–511. doi:10.14359/2616.
[42] McLean, D. I., Phan, L. T., Lew, H. S., & White, R. N. (1990). Punching shear behavior of lightweight concrete slabs and shells. ACI Structural Journal, 87(4), 386–392. doi:10.14359/2735.
[43] Marzouk, H., & Hussein, A. (1991). Punching shear analysis of reinforced high-strength concrete slabs. Canadian Journal of Civil Engineering, 18(6), 954–963. doi:10.1139/l91-118.
[44] Alexander, S. D. B., & Simmonds, S. H. (1992). Tests of column-flat plate connections. ACI Structural Journal, 89(5), 495–502. doi:10.14359/2948.
[45] Marzouk, H., & Hussein, A. (1991). Experimental investigation on the behavior of high-strength concrete slabs. ACI Structural Journal, 88(6), 701–713. doi:10.14359/1261.
[46] Tomaszewicz, A. (1993). Punching shear capacity of reinforced concrete slabs. High Strength Concrete SP2-Plates and Shells. Report 2.3. Report No. STF70A93082. SINTEF, Trondheim, Norway.
[47] Fang, I. K., Lee, J. H., & Chen, C. R. (1994). Behavior of partially restrained slabs under concentrated load. ACI Structural Journal, 91(2), 133–139. doi:10.14359/4557.
[48] Collins, M. P., Mitchell, D., Adebar, P., & Vecchio, F. J. (1996). A general shear design method. ACI Structural Journal, 93(1), 36–45. doi:10.14359/9838.
[49] Hallgren, M. (1998). Punching shear capacity of reinforced high-strength concrete slabs. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden.
[50] Marzouk, H., & Jiang, D. (1997). Experimental investigation on shear enhancement types for high-strength concrete plates. ACI Structural Journal, 94(1), 49–58. doi:10.14359/460.
[51] Ghannoum, C. M. (1998). Effect of high-strength concrete on the performance of slab-column specimens. Master Thesis, McGill University, Montreal, Canada.
[52] Marzouk, H., Emam, M., & Hilal, M. S. (1998). Effect of high-strength concrete slab on the behavior of slab-column connections. ACI Structural Journal, 95(3), 227–237. doi:10.14359/9713.
[53] Broms, C. E. (2000). Elimination of flat plate punching failure mode. ACI Structural Journal, 97(1), 94–101. doi:10.14359/838.
[54] Li, K. K. L. (2000). Influence of size on punching shear strength of concrete slabs. Master Thesis, McGill University, Montreal, Canada.
[55] McHarg, P. J., Cook, W. D., Mitchell, D., & Yoon, Y. S. (2000). Improved transmission of high-strength concrete column loads through normal strength concrete slabs. ACI Structural Journal, 97(1), 157–165. doi:10.14359/845.
[56] Osman, M., Marzouk, H., & Helmy, S. (2000). Behavior of high-strength lightweight concrete slabs under punching loads. ACI Structural Journal, 97(3), 492–498. doi:10.14359/4644.
[57] Guandalini, S., & Muttoni, A. (2004). Symmetrical punching tests on slabs without transverse reinforcement. Test Report, í‰cole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
[58] Sundquist, H., & Kinnunen, S. (2004). The effect of column head and drop panels on the punching capacity of flat slabs. Bulletin, 82.
[59] Abdel Hafez, A. M. (2005). Punching shear behavior of normal and high-strength concrete slabs under static loading. Journal of Engineering Sciences, 33(4), 1215-1235.
[60] Ozden, S., Ersoy, U., & Ozturan, T. (2006). Punching shear tests of normal- and high-strength concrete flat plates. Canadian Journal of Civil Engineering, 33(11), 1389–1400. doi:10.1139/L06-089.
[61] Birkle, G., & Dilger, W. H. (2008). Influence of slab thickness on punching shear strength. ACI Structural Journal, 105(2), 180–188. doi:10.14359/19733.
[62] Lee, J.-H., Yoon, Y.-S., Lee, S.-H., Cook, W. D., & Mitchell, D. (2008). Enhancing Performance of Slab-Column Connections. Journal of Structural Engineering, 134(3), 448–457. doi:10.1061/(asce)0733-9445(2008)134:3(448).
[63] Metwally, I. M., Issa, M. S., & El-Betar, S. A. (2008). Punching shear resistance of normal and high strength reinforced concrete flat slabs. Civ Eng Res Mag, 30(3), 982-1003.
[64] Marzouk, R., & Rizk, E. (2009). Punching analysis of reinforced concrete two-way slabs. Research Report RCS01, Faculty of Engineering and Applied Science, Memorial University of Newfoundland St. John's, Newfoundland, Canada.
[65] Inácio, M. M. G., Almeida, A. F. O., Faria, D. M. V., Lúcio, V. J. G., & Ramos, A. P. (2015). Punching of high strength concrete flat slabs without shear reinforcement. Engineering Structures, 103, 275–284. doi:10.1016/j.engstruct.2015.09.010.
[66] Einpaul, J., Bujnak, J., Ruiz, M. F., & Muttoni, A. (2016). Study on influence of column size and slab slenderness on punching strength. ACI Structural Journal, 113(1), 135–146. doi:10.14359/51687945.
[67] Francesconi, L., Pani, L., & Stochino, F. (2016). Punching shear strength of reinforced recycled concrete slabs. Construction and Building Materials, 127, 248–263. doi:10.1016/j.conbuildmat.2016.09.094.
[68] Teng, S., Chanthabouala, K., Lim, D. T. Y., & Hidayat, R. (2018). Punching shear strength of slabs and influence of low reinforcement ratio. ACI Structural Journal, 115(6), 1816. doi:10.14359/51701089.
[69] Urban, T., GoŠ‚dyn, M., Krawczyk, Š., & Sowa, Š. (2019). Experimental investigations on punching shear of lightweight aggregate concrete flat slabs. Engineering Structures, 197, 109371. doi:10.1016/j.engstruct.2019.109371.
[70] Shaaban, I. G., Hosni, A. H., Montaser, W. M., & El-Sayed, M. M. (2020). Effect of premature loading on punching resistance of reinforced concrete flat slabs. Case Studies in Construction Materials, 12, 320. doi:10.1016/j.cscm.2019.e00320.
[71] Sahoo, S., & Singh, B. (2021). Punching shear capacity of recycled-aggregate concrete slab-column connections. Journal of Building Engineering, 41, 102430. doi:10.1016/j.jobe.2021.102430.
[72] Qian, K., Li, J. S., Huang, T., Weng, Y. H., & Deng, X. F. (2022). Punching shear strength of corroded reinforced concrete slab-column connections. Journal of Building Engineering, 45, 103489. doi:10.1016/j.jobe.2021.103489.
[73] ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). American Concrete Institute (ACI), Michigan, United States.
[74] BS 8110-1-1997. (1997). Structural use of concrete, part 1: Code of practice for design and construction. British Standards Institution (BSI), London, United Kingdom.
[75] Sherif, A. G., & Dilger, W. H. (1996). Critical review of the CSA A23.3-94 punching shear strength provisions for interior columns. Canadian Journal of Civil Engineering, 23(5), 998–1011. doi:10.1139/l96-907.
[76] Gardner, N. J., & Shao, X. Y. (1996). Punching shear of continuous flat reinforced concrete slabs. ACI Structural Journal, 93(2), 218–228. doi:10.14359/1494.
[77] Japan Society of Civil Engineers (JSCE). (2007). Standard Specifications for Concrete Structures. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.
[78] Jabbar, A. S. A., Alam, M. A., & Mustapha, K. N. (2012). A new equation for predicting punching shear strength of R/C flat plates. Proceedings National Graduate Conference, 8-10 November, 2012, University Tenaga Nasional, Putrajaya Campus, Kajang, Malaysia.
[79] Freedman, D., Pisani, R., & Purves, R. (2020). Statistics: Fourth international student edition. W. W. Norton & Company, New York, United States.
[80] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi:10.1023/A:1010933404324
[81] Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. doi:10.1890/07-0539.1.
[82] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.
[83] Drucker, H. (1997). Improving regressors using boosting techniques. Proceedings of the Fourteenth International Conference on Machine Learning, 8-12 July, 1997, San Francisco, United States.
[84] chapire, R. E. (2013). Explaining AdaBoost. Empirical Inference, 37–52. doi:10.1007/978-3-642-41136-6_5.
[85] Dhananjay, B., & Sivaraman, J. (2021). Analysis and classification of heart rate using CatBoost feature ranking model. Biomedical Signal Processing and Control, 68, 102610. doi:10.1016/j.bspc.2021.102610.
[86] CatBoost. (2024). CatBoost is a machine learning algorithm that uses gradient boosting on decision trees. Available online: https://catboost.ai/docs/ (accessed on May 2024).
[87] Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.
[88] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 2017-December, 3147–3155.
[89] Zhou, Z., Wang, M., Huang, J., Lin, S., & Lv, Z. (2022). Blockchain in Big Data Security for Intelligent Transportation with 6G. IEEE Transactions on Intelligent Transportation Systems, 23(7), 9736–9746. doi:10.1109/TITS.2021.3107011.
[90] Yang, S., & Zhang, H. (2018). Comparison of Several Data Mining Methods in Credit Card Default Prediction. Intelligent Information Management, 10(05), 115–122. doi:10.4236/iim.2018.105010.
[91] Shirzadi Javid, A. A., Naseri, H., & Etebari Ghasbeh, M. A. (2021). Estimating the Optimal Mixture Design of Concrete Pavements Using a Numerical Method and Meta-heuristic Algorithms. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2), 913–927. doi:10.1007/s40996-020-00352-6.
[92] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, í‰. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
[93] Naseri, H., Waygood, E. O. D., Wang, B., & Patterson, Z. (2022). Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters. International Journal of Environmental Research and Public Health, 19(24), 16844. doi:10.3390/ijerph192416844.
[94] Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. Mathematical Intelligencer, 27(2), 83-85. doi:10.1007/BF02985802.
[95] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics. Springer New York, United States. doi:10.1007/978-0-387-84858-7.
[96] DIN 1045-1 (2008). Plain, Reinforced and Prestressed Concrete Structures. Design and Construction. Deutsches Institut für Normung (DIN), Berlinb, Germany.
[97] Zhang, Q. I. (2003). The punching strength of high strength flat slabs: Experimental study. Research Study, Memorial University of Newfoundland St. John's, Newfoundland, Canada.
[98] BS EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings. British Standards Institution. British Standards Institution, London, United Kingdom.
[99] Marzouk, H., & Chen, Z. W. (1995). Fracture Energy and Tension Properties of High-Strength Concrete. Journal of Materials in Civil Engineering, 7(2), 108–116. doi:10.1061/(asce)0899-1561(1995)7:2(108).
[100] Marzouk, H., Emam, M., & Hilal, M. S. (1998). Sensitivity of shear strength to fracture energy of high-strength concrete slabs. Canadian Journal of Civil Engineering, 25(1), 40–50. doi:10.1139/l97-053.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.