Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete
Downloads
Doi: 10.28991/CEJ-2024-010-04-05
Full Text: PDF
[2] Sanjuán, M. í., Andrade, C., Mora, P., & Zaragoza, A. (2020). Carbon dioxide uptake by cement-based materials: A Spanish case study. Applied Sciences (Switzerland), 10(1), 339. doi:10.3390/app10010339.
[3] Nisbet, M., Van Geem, M. G., Gajda, J., & Marceau, M. L. (1997). Environmental life cycle inventory of Portland cement and concrete. World Cement, 28(4), 3.
[4] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. doi:10.1016/j.conbuildmat.2019.117455.
[5] Šach, M., Korniejenko, K., & MikuŠ‚a, J. (2016). Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Engineering, 151, 410–416. doi:10.1016/j.proeng.2016.07.350.
[6] Duan, P., Yan, C., Zhou, W., & Luo, W. (2015). Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arabian Journal for Science and Engineering, 40(8), 2261–2269. doi:10.1007/s13369-015-1748-0.
[7] Davidovits, J. (1994,). Properties of geopolymer cements. First international conference on alkaline cements and concretes, 11-14 October,1994, Kiev, Ukraine.
[8] Saillio, M., Baroghel-Bouny, V., Pradelle, S., Bertin, M., Vincent, J., & d'Espinose de Lacaillerie, J. B. (2021). Effect of supplementary cementitious materials on carbonation of cement pastes. Cement and Concrete Research, 142, 106358–106375. doi:10.1016/j.cemconres.2021.106358.
[9] Puertas, F., Martínez-Ramírez, S., Alonso, S., & Vázquez, T. (2000). Alkali-activated fly ash/slag cements. Strength behaviour and hydration products. Cement and Concrete Research, 30(10), 1625–1632. doi:10.1016/S0008-8846(00)00298-2.
[10] Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., & Panigrahi, S. K. (2022). Durability characteristics of geopolymer concrete - Progress and perspectives. Journal of Building Engineering, 59, 105100. doi:10.1016/j.jobe.2022.105100.
[11] Ke, S., Wang, Y., Pan, Z., Ning, C., & Zheng, S. (2016). Recycling of polished tile waste as a main raw material in porcelain tiles. Journal of Cleaner Production, 115, 238–244. doi:10.1016/j.jclepro.2015.12.064.
[12] Wongpattanawut, W., & Ayudhya, B. I. N. (2023). Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar. Civil Engineering Journal, 9(8), 1808–1827. doi:10.28991/cej-2023-09-08-01.
[13] Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, 205. doi:10.1016/j.cscm.2018.e00205.
[14] Mangat, P., & Lambert, P. (2016). Sustainability of alkali-activated cementitious materials and geopolymers. Sustainability of Construction Materials, 459–476. doi:10.1016/b978-0-08-100370-1.00018-4.
[15] Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures/Materiaux et Constructions, 50(1), 1-12. doi:10.1617/s11527-016-0968-4.
[16] Ekaputri, J. J., Lie, H. A., Fujiyama, C., Shovitri, M., Alami, N. H., & Setiamarga, D. H. E. (2019). The effect of alkali concentration on chloride penetration in geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 615(1), 012114. doi:10.1088/1757-899x/615/1/012114.
[17] Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. doi:10.1007/s43615-021-00029-w.
[18] Palomo, A., Fernández-Jiménez, A., Kovalchuk, G., Ordoñez, L. M., & Naranjo, M. C. (2007). Opc-fly ash cementitious systems: Study of gel binders produced during alkaline hydration. Journal of Materials Science, 42(9), 2958–2966. doi:10.1007/s10853-006-0585-7.
[19] Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. doi:10.1007/s10853-006-0584-8.
[20] Aydin, S., & Baradan, B. (2012). Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials and Design, 35, 374–383. doi:10.1016/j.matdes.2011.10.005.
[21] Provis, J. L., & Van Deventer, J. S. J. (2009). Geopolymers: Structures, processing, properties and industrial applications. Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781845696382.
[22] Aydin, S., & Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering, 57, 166–172. doi:10.1016/j.compositesb.2013.10.001.
[23] Amaludin, A. E., Asrah, H., Mohamad, H. M., bin Amaludin, H. Z., & bin Amaludin, N. A. (2023). Physicochemical and microstructural characterization of Klias Peat, Lumadan POFA, and GGBFS for geopolymer based soil stabilization. HighTech and Innovation Journal, 4(2), 327-348. doi:10.28991/HIJ-2023-04-02-07.
[24] Mohd Mortar, N. A., Abdullah, M. M. A. B., Abdul Razak, R., Abd Rahim, S. Z., Aziz, I. H., NabiaЂek, M., Jaya, R. P., Semenescu, A., Mohamed, R., & Ghazali, M. F. (2022). Geopolymer Ceramic Application: A Review on Mix Design, Properties and Reinforcement Enhancement. Materials, 15(21), 7567. doi:10.3390/ma15217567.
[25] Meena, R. V., Jain, J. K., Chouhan, H. S., & Beniwal, A. S. (2022). Use of waste ceramics to produce sustainable concrete: A review. Cleaner Materials, 4, 100085. doi:10.1016/j.clema.2022.100085.
[26] Menger, M. H., Ruviaro, A. S., Silvestro, L., Corríªa, T. G., de Matos, P. R., & Pelisser, F. (2023). Utilizing porcelain tile polishing residue in eco-efficient high-strength geopolymers with steel microfibers. Structures, 58, 105630. doi:10.1016/j.istruc.2023.105630.
[27] Yanti, E. D., Mubarok, L., Subari, Erlangga, B. D., Widyaningsih, E., Jakah, Pratiwi, I., Rinovian, A., Nugroho, T., & Herbudiman, B. (2024). Utilization of various ceramic waste as fine aggregate replacement into fly ash-based geopolymer. Materials Letters, 357, 135651. doi:10.1016/j.matlet.2023.135651.
[28] Ricciotti, L., Occhicone, A., Ferone, C., Cioffi, R., & Roviello, G. (2024). Eco-design of geopolymer-based materials recycling porcelain stoneware wastes: a life cycle assessment study. Environment, Development and Sustainability, 26(2), 4055–4074. doi:10.1007/s10668-022-02870-x.
[29] Pitarch, A. M., Reig, L., Tomás, A. E., Forcada, G., Soriano, L., Borrachero, M. V., ... & Monzó, J. M. (2021). Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements. Journal of Cleaner Production, 279, 123713. doi:10.1016/j.jclepro.2020.123713.
[30] Fortuna, A., Fortuna, D. M., & Martini, E. (2017). An industrial approach to ceramics: sanitaryware. Plinius, 43, 138-145.
[31] Tahwia, A. M., Ellatief, M. A., Bassioni, G., Heniegal, A. M., & Elrahman, M. A. (2023). Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. Journal of Materials Research and Technology, 23, 5681–5697. doi:10.1016/j.jmrt.2023.02.177.
[32] AL-Oqla, F. M., Faris, H., Habib, M., & Castillo, P. A. (2023). Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers. Emerging Science Journal, 7(6), 1863-1874. doi:10.28991/ESJ-2023-07-06-02.
[33] Mantovani, V. A., Franco, C. S., Mancini, S. D., Haseagawa, H. L., Gianelli, B. F., Batista, V. X., & Rodrigues, L. L. (2013). Comparison of polymers and ceramics in new and discarded electrical insulators: Reuse and recycling possibilities. Revista Materia, 18(4), 1549–1562. doi:10.1590/S1517-70762013000400015.
[34] Geraldo, R. H., Fernandes, L. F. R., & Camarini, G. (2021). Mechanical properties of porcelain waste alkali-activated mortar. Open Ceramics, 8. doi:10.1016/j.oceram.2021.100184.
[35] Zuda, L., Bayer, P., Rovnaník, P., & ÄŒerní½, R. (2008). Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 30(4), 266–273. doi:10.1016/j.cemconcomp.2007.11.003.
[36] Ramos, G. A., de Matos, P. R., Pelisser, F., & Gleize, P. J. P. (2020). Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. Journal of Building Engineering, 32, 101699. doi:10.1016/j.jobe.2020.101699.
[37] Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and building materials, 63, 303-310. doi:10.1016/j.conbuildmat.2014.04.010.
[38] Yılmaz, A., Degirmenci, F. N., & Aygörmez, Y. (2023). Effect of initial curing conditions on the durability performance of low-calcium fly ash-based geopolymer mortars. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 398. doi:10.1016/j.bsecv.2023.10.006.
[39] Amigó, J. M., Serrano, F. J., Kojdecki, M. A., Bastida, J., Esteve, V., Reventós, M. M., & Martí, F. (2005). X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society, 25(9), 1479–1486. doi:10.1016/j.jeurceramsoc.2004.05.019.
[40] Kohout, J., Koutník, P., Hájková, P., Kohoutová, E., Soukup, A., & Vakili, M. (2023). Effect of Aluminosilicates' Particle Size Distribution on the Microstructural and Mechanical Properties of Metakaolinite-Based Geopolymers. Materials, 16(14), 5008. doi:10.3390/ma16145008.
[41] Kohout, J., Koutník, P., Bezucha, P., & Kwoczynski, Z. (2019). Leachability of the metakaolinite-rich materials in different alkaline solutions. Materials Today Communications, 21, 100669. doi:10.1016/j.mtcomm.2019.100669.
[42] Kovኙík, T., Rieger, D., Kadlec, J., KŠ™enek, T., Kullová, L., Pola, M., BÄ›lskí½, P., FranÄe, P., & Š˜íha, J. (2017). Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Construction and Building Materials, 143, 599–606. doi:10.1016/j.conbuildmat.2017.03.134.
[43] Davis, R. F. (1991). Mullite. Concise Encyclopedia of Advanced Ceramic Materials, 315–317, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-0-08-034720-2.50087-3.
[44] Xu, N., Li, S., Li, Y., Xue, Z., Yuan, L., Zhang, J., & Wang, L. (2015). Preparation and properties of porous ceramic aggregates using electrical insulators waste. Ceramics International, 41(4), 5807–5811. doi:10.1016/j.ceramint.2015.01.009.
[45] Rahman, M. M., Law, D. W., & Patnaikuni, I. (2017). Effect of curing temperature on the properties of 100% clay-based geopolymer concrete. Proceedings of International Structural Engineering and Construction, 4(1), 1–11. doi:10.14455/ISEC.res.2017.98.
[46] STM C117-17. (2023). Standard test method for materials finer than 75 µm (No. 200) Sieve in Mineral Aggregates by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/C0117-17.
[47] ASTM C191-21. (2021). Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.
[48] ASTMC143/C143M-12. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-12.
[49] BS 1881: part 104: 1983. (1983). Testing concrete Part 104. Method for determination of Vebe time. British Standard, London, United Kingdom.
[50] ASTM C944M. (2017). Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0944-99.
[51] ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.
[52] ASTM C187-16. (2023). Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste. ASTM International, Pennsylvania, United States. doi:10.1520/C187-16.
[53] Sun, Q., Tian, S., Sun, Q., Li, B., Cai, C., Xia, Y., ... & Mu, Q. (2019). Preparation and microstructure of fly ash geopolymer paste backfill material. Journal of Cleaner Production, 225, 376-390. doi:10.1016/j.jclepro.2019.03.310.
[54] Dineshkumar, M., & Umarani, C. (2020). Effect of Alkali Activator on the Standard Consistency and Setting Times of Fly Ash and GGBS-Based Sustainable Geopolymer Pastes. Advances in Civil Engineering, 2020, 10. doi:10.1155/2020/2593207.
[55] Li, Y., Huang, L., Gao, C., Mao, Z., & Qin, M. (2023). Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recycled fireclay brick aggregates. Construction and Building Materials, 392, 131450. doi:10.1016/j.conbuildmat.2023.131450.
[56] Rafeet, A., Vinai, R., Soutsos, M., & Sha, W. (2017). Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Construction and Building Materials, 147, 130–142. doi:10.1016/j.conbuildmat.2017.04.036.
[57] Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.
[58] Ranjbar, N., Kashefi, A., & Maheri, M. R. (2018). Hot-pressed geopolymer: Dual effects of heat and curing time. Cement and Concrete Composites, 86, 1–8. doi:10.1016/j.cemconcomp.2017.11.004.
[59] Criado, M., Fernández-Jiménez, A., & Palomo, A. (2007). Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous and Mesoporous Materials, 106(1–3), 180–191. doi:10.1016/j.micromeso.2007.02.055.
[60] Ukritnukun, S., Koshy, P., Rawal, A., Castel, A., & Sorrell, C. C. (2020). Predictive model of setting times and compressive strengths for low-alkali, ambient-cured, fly ash/slag-based geopolymers. Minerals, 10(10), 920. doi:10.3390/min10100920.
[61] Kohout, J., Koutník, P., Bezucha, P., & Kwoczynski, Z. (2019). Leachability of the metakaolinite-rich materials in different alkaline solutions. Materials Today Communications, 21. doi:10.1016/j.mtcomm.2019.100669.
[62] Ramli, M. I. I., Salleh, M. A. A. M., Abdullah, M. M. A. B., Aziz, I. H., Ying, T. C., Shahedan, N. F., Kockelmann, W., Fedrigo, A., Sandu, A. V., Vizureanu, P., Chaiprapa, J., & Nergis, D. D. B. (2022). The Influence of Sintering Temperature on the Pore Structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic. Materials, 15(7), 2667. doi:10.3390/ma15072667.
[63] Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. doi:10.1016/j.conbuildmat.2009.12.023.
[64] El-Hassan, H., & Elkholy, S. (2021). Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement. Construction and Building Materials, 311, 125313. doi:10.1016/j.conbuildmat.2021.125313
[65] Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. doi:10.1016/j.conbuildmat.2016.02.106.
[66] Zhao, F. Q., Ni, W., Wang, H. J., & Liu, H. J. (2007). Activated fly ash/slag blended cement. Resources, Conservation and recycling, 52(2), 303-313. doi:10.1016/j.resconrec.2007.04.002.
[67] Kewalramani, M., & Khartabil, A. (2021). Porosity evaluation of concrete containing supplementary cementitious materials for durability assessment through volume of permeable voids and water immersion conditions. Buildings, 11(9), 378. doi:10.3390/buildings11090378.
[68] Marjanović, N., Komljenović, M., BaŠ¡Äarević, Z., Nikolić, V., & Petrović, R. (2015). Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends. Ceramics International, 41(1), 1421–1435. doi:10.1016/j.ceramint.2014.09.075.
[69] Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash. International Journal of Concrete Structures and Materials, 9(1), 35–43. doi:10.1007/s40069-014-0085-0.
[70] Samantasinghar, S., & Singh, S. P. (2019). Fresh and Hardened Properties of Fly Ash–Slag Blended Geopolymer Paste and Mortar. International Journal of Concrete Structures and Materials, 13(1), 1–12. doi:10.1186/s40069-019-0360-1.
[71] Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.
[72] Fernández-Jiménez, A. M., Palomo, A., & López-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106–112. doi:10.14359/15261.
[73] Hamidi, R. M., Man, Z., & Azizli, K. A. (2016). Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. Procedia Engineering, 148, 189–193. doi:10.1016/j.proeng.2016.06.568.
[74] Zhang, N., Hedayat, A., Figueroa, L., Steirer, K. X., Li, L., & Bolaños Sosa, H. G. (2023). Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: Experimental and numerical investigations. Journal of Building Engineering, 75, 107075. doi:10.1016/j.jobe.2023.107075.
[75] Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. doi:10.1016/j.mineng.2009.03.022.
[76] Singh, B., Rahman, M. R., Paswan, R., & Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171–179. doi:10.1016/j.conbuildmat.2016.05.008.
[77] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. doi:10.1007/s10853-006-0637-z.
[78] Krivenko, P. V., & Kovalchuk, G. Y. (2007). Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. Journal of Materials Science, 42(9), 2944–2952. doi:10.1007/s10853-006-0528-3.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
