Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils
Vol. 10 No. 3 (2024): March
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-03-05
Full Text: PDF
KhoderAgha, N., & Assaf, G. (2024). Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils. Civil Engineering Journal, 10(3), 729–737. https://doi.org/10.28991/CEJ-2024-010-03-05
[1] Anderson, W. H. (2008). Foundation problems and pyrite oxidation in the Chattanooga Shale, University of Kentucky, Estill County, Kentucky. Report of Investigations--KGS. University of Kentucky, Lexington, United States. doi:10.13023/kgs.ri18.12.
[2] Maher, M., & Gray, C. (2014). Aggregates prone to causing pyrite-induced heave: How they can be avoided. Proceedings of the 17th Extractive Industry Geology Conference, September 2014, Ormskirk, United Kingdom.
[3] ACQC. 1999. Pyrite and Your House. Association des Consommateurs pour la Qualité Dans la Construction, Montréal, Canada. (In French).
[4] Nixon, P. J. (1978). Floor heave in buildings due to the use of pyritic shales as fill material. Chemistry and Industry, March, 160-164.
[5] Yamanaka, T., Miyasaka, H., Aso, I., Tanigawa, M., Shoji, K., & Yohta, H. (2002). Involvement of sulfur- and iron-transforming bacteria in heaving of house foundations. Geomicrobiology Journal, 19(5), 519–528. doi:10.1080/01490450290098487.
[6] Hawkins, A. B. (2014). Implications of pyrite oxidation for engineering works. In Implications of Pyrite Oxidation for Engineering Works. Springer International Publishing, Cham, Switzerland, doi:10.1007/978-3-319-00221-7.
[7] Cripps, J. C., Reid, J. M., Czerewko, M. A., & Longworth, I. (2019). Tackling problems in civil engineering caused by the presence of pyrite. Quarterly Journal of Engineering Geology and Hydrogeology, 52(4), 481–500. doi:10.1144/qjegh2019-024.
[8] Hoover, S. E., Wang, M. C., & Dempsey, B. (2004). Structural damage induced by pyritic shale. International Conference on Case Histories in Geotechnical Engineering, 13-17 April, 2004, Missouri, United states.
[9] Maher, M. L. J., Azzie, B., Gray, C., & Hunt, J. (2011). A large scale laboratory swell test to establish the susceptibility to expansion of crushed rock containing pyrite. Proceedings of the 14th Pan-Am CGS Geotechnical Conference, 1-7 October, 2011, Toronto, Canada.
[10] McKeon, í‰. P., O'Connell, A. M., & McCabe, B. A. (2017). Laboratory foundation model with pyrite-bearing mudstone fill. International Journal of Physical Modelling in Geotechnics, 17(4), 204–219. doi:10.1680/jphmg.16.00001.
[11] Conyers, L. B. (2004). Ground-penetrating Radar for Archaeology. AltaMira Press, California, United States.
[12] AL-Hameedawi, M. M., Thabit, J. M., & AL-Menshed, F. H. (2023). Electrical resistivity tomography and ground-penetrating radar methods to detect archaeological walls of Babylonian houses near Ishtar temple, ancient Babylon city, Iraq. Geophysical Prospecting, 71(9), 1792–1806. doi:10.1111/1365-2478.13293.
[13] Pajewski, L., Benedetto, A., Derobert, X., Giannopoulos, A., Loizos, A., Manacorda, G., Marciniak, M., Plati, C., Schettini, G., & Trinks, I. (2013). Applications of Ground Penetrating Radar in civil engineering - COST action TU1208. 2013 7th International Workshop on Advanced Ground Penetrating Radar. doi:10.1109/iwagpr.2013.6601528
[14] Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences, 29(1), 229–255. doi:10.1146/annurev.earth.29.1.229.
[15] Busby, J., Cuss, R., Raines, M., & Beamish, D. (2004). Application of ground penetrating radar geological investigations. British Geological Survey, Keyworth, United Kingdom.
[16] Mellett, J. S. (1995). Ground penetrating radar applications in engineering, environmental management, and geology. Journal of Applied Geophysics, 33(1–3), 157–166. doi:10.1016/0926-9851(95)90038-1.
[17] Balkaya, Ç., Kalyoncuoğlu, íœ. Y., Özhanlı, M., Merter, G., Çakmak, O., & Talih Güven. (2018). Ground-penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeological Prospection, 25(4), 285–300. doi:10.1002/arp.1708.
[18] Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Science Reviews, 66(3–4), 261–330. doi:10.1016/j.earscirev.2004.01.004.
[19] Oikonomopoulou, E. C., Palieraki, V. A., Sfikas, I. P., & Trezos, C. G. (2022). Reliability and limitations of GPR for identifying objects embedded in concrete – Experience from the lab. Case Studies in Construction Materials, 16, 898. doi:10.1016/j.cscm.2022.e00898.
[20] Liu, H., Lin, C., Cui, J., Fan, L., Xie, X., & Spencer, B. F. (2020). Detection and localization of rebar in concrete by deep learning using ground penetrating radar. Automation in Construction, 118, 103279. doi:10.1016/j.autcon.2020.103279.
[21] Tian, H., Zhou, Z., Zhang, Y., & Wei, Y. (2020). Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork. Engineering Structures, 210, 110403. doi:10.1016/j.engstruct.2020.110403.
[22] Pérez-Gracia, V., González-Drigo, R., & Di Capua, D. (2008). Horizontal resolution in a non-destructive shallow GPR survey: An experimental evaluation. NDT and E International, 41(8), 611–620. doi:10.1016/j.ndteint.2008.06.002.
[23] Abdul Rahman, M., Donda, D., Latosh, F., Tarussov, A., & Bagchi, A. (2022). Entropy evaluation of subsurface materials and defects in Concrete Slabs using GPR. 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 8-12 August, 2022, Montreal, Canada.
[24] Dinh, K., & Gucunski, N. (2021). Factors affecting the detectability of concrete delamination in GPR images. Construction and Building Materials, 274, 121837. doi:10.1016/j.conbuildmat.2020.121837.
[25] Rasol, M. A., Pérez-Gracia, V., Fernandes, F. M., Pais, J. C., Santos-Assunçao, S., Santos, C., & Sossa, V. (2020). GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement, 158, 107662. doi:10.1016/j.measurement.2020.107662.
[26] GSSI Handbook. (2003). Geophysical Survey Systems, Inc., North Salem, United States. Available online: www.geophysical.com (accessed on February 2024).
[27] Procedure CTQ-M200. (2001). Appraisal procedure for existing residential buildings. Quebec Technical Committee for the Study of Swelling, Quebec City, Canada.
[2] Maher, M., & Gray, C. (2014). Aggregates prone to causing pyrite-induced heave: How they can be avoided. Proceedings of the 17th Extractive Industry Geology Conference, September 2014, Ormskirk, United Kingdom.
[3] ACQC. 1999. Pyrite and Your House. Association des Consommateurs pour la Qualité Dans la Construction, Montréal, Canada. (In French).
[4] Nixon, P. J. (1978). Floor heave in buildings due to the use of pyritic shales as fill material. Chemistry and Industry, March, 160-164.
[5] Yamanaka, T., Miyasaka, H., Aso, I., Tanigawa, M., Shoji, K., & Yohta, H. (2002). Involvement of sulfur- and iron-transforming bacteria in heaving of house foundations. Geomicrobiology Journal, 19(5), 519–528. doi:10.1080/01490450290098487.
[6] Hawkins, A. B. (2014). Implications of pyrite oxidation for engineering works. In Implications of Pyrite Oxidation for Engineering Works. Springer International Publishing, Cham, Switzerland, doi:10.1007/978-3-319-00221-7.
[7] Cripps, J. C., Reid, J. M., Czerewko, M. A., & Longworth, I. (2019). Tackling problems in civil engineering caused by the presence of pyrite. Quarterly Journal of Engineering Geology and Hydrogeology, 52(4), 481–500. doi:10.1144/qjegh2019-024.
[8] Hoover, S. E., Wang, M. C., & Dempsey, B. (2004). Structural damage induced by pyritic shale. International Conference on Case Histories in Geotechnical Engineering, 13-17 April, 2004, Missouri, United states.
[9] Maher, M. L. J., Azzie, B., Gray, C., & Hunt, J. (2011). A large scale laboratory swell test to establish the susceptibility to expansion of crushed rock containing pyrite. Proceedings of the 14th Pan-Am CGS Geotechnical Conference, 1-7 October, 2011, Toronto, Canada.
[10] McKeon, í‰. P., O'Connell, A. M., & McCabe, B. A. (2017). Laboratory foundation model with pyrite-bearing mudstone fill. International Journal of Physical Modelling in Geotechnics, 17(4), 204–219. doi:10.1680/jphmg.16.00001.
[11] Conyers, L. B. (2004). Ground-penetrating Radar for Archaeology. AltaMira Press, California, United States.
[12] AL-Hameedawi, M. M., Thabit, J. M., & AL-Menshed, F. H. (2023). Electrical resistivity tomography and ground-penetrating radar methods to detect archaeological walls of Babylonian houses near Ishtar temple, ancient Babylon city, Iraq. Geophysical Prospecting, 71(9), 1792–1806. doi:10.1111/1365-2478.13293.
[13] Pajewski, L., Benedetto, A., Derobert, X., Giannopoulos, A., Loizos, A., Manacorda, G., Marciniak, M., Plati, C., Schettini, G., & Trinks, I. (2013). Applications of Ground Penetrating Radar in civil engineering - COST action TU1208. 2013 7th International Workshop on Advanced Ground Penetrating Radar. doi:10.1109/iwagpr.2013.6601528
[14] Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences, 29(1), 229–255. doi:10.1146/annurev.earth.29.1.229.
[15] Busby, J., Cuss, R., Raines, M., & Beamish, D. (2004). Application of ground penetrating radar geological investigations. British Geological Survey, Keyworth, United Kingdom.
[16] Mellett, J. S. (1995). Ground penetrating radar applications in engineering, environmental management, and geology. Journal of Applied Geophysics, 33(1–3), 157–166. doi:10.1016/0926-9851(95)90038-1.
[17] Balkaya, Ç., Kalyoncuoğlu, íœ. Y., Özhanlı, M., Merter, G., Çakmak, O., & Talih Güven. (2018). Ground-penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeological Prospection, 25(4), 285–300. doi:10.1002/arp.1708.
[18] Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Science Reviews, 66(3–4), 261–330. doi:10.1016/j.earscirev.2004.01.004.
[19] Oikonomopoulou, E. C., Palieraki, V. A., Sfikas, I. P., & Trezos, C. G. (2022). Reliability and limitations of GPR for identifying objects embedded in concrete – Experience from the lab. Case Studies in Construction Materials, 16, 898. doi:10.1016/j.cscm.2022.e00898.
[20] Liu, H., Lin, C., Cui, J., Fan, L., Xie, X., & Spencer, B. F. (2020). Detection and localization of rebar in concrete by deep learning using ground penetrating radar. Automation in Construction, 118, 103279. doi:10.1016/j.autcon.2020.103279.
[21] Tian, H., Zhou, Z., Zhang, Y., & Wei, Y. (2020). Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork. Engineering Structures, 210, 110403. doi:10.1016/j.engstruct.2020.110403.
[22] Pérez-Gracia, V., González-Drigo, R., & Di Capua, D. (2008). Horizontal resolution in a non-destructive shallow GPR survey: An experimental evaluation. NDT and E International, 41(8), 611–620. doi:10.1016/j.ndteint.2008.06.002.
[23] Abdul Rahman, M., Donda, D., Latosh, F., Tarussov, A., & Bagchi, A. (2022). Entropy evaluation of subsurface materials and defects in Concrete Slabs using GPR. 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 8-12 August, 2022, Montreal, Canada.
[24] Dinh, K., & Gucunski, N. (2021). Factors affecting the detectability of concrete delamination in GPR images. Construction and Building Materials, 274, 121837. doi:10.1016/j.conbuildmat.2020.121837.
[25] Rasol, M. A., Pérez-Gracia, V., Fernandes, F. M., Pais, J. C., Santos-Assunçao, S., Santos, C., & Sossa, V. (2020). GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement, 158, 107662. doi:10.1016/j.measurement.2020.107662.
[26] GSSI Handbook. (2003). Geophysical Survey Systems, Inc., North Salem, United States. Available online: www.geophysical.com (accessed on February 2024).
[27] Procedure CTQ-M200. (2001). Appraisal procedure for existing residential buildings. Quebec Technical Committee for the Study of Swelling, Quebec City, Canada.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
