Evaluating Recycled PET as an Alternative Material for the Construction Sector Towards Sustainability
Downloads
Doi: 10.28991/CEJ-2024-010-04-020
Full Text: PDF
[2] Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.
[3] Akhtar, M. N., & Tarannum, N. (2018). Flyash as a resource material in construction industry: a clean approach to environment management. Sustainable Construction and Building Materials, Springer, Singapore. doi:10.5772/intechopen.82078.
[4] LajÄin, D., & GuzoŠˆová, V. (2023). Identification of Knowledge Management Barriers in Scientific R&D Projects in Czech Academic Environment. HighTech and Innovation Journal, 4(1), 19-36. doi:10.28991/HIJ-2023-04-01-02.
[5] Prasad Bhatta, D., Singla, S., & Garg, R. (2022). Experimental investigation on the effect of Nano-silica on the silica fume-based cement composites. Materials Today: Proceedings, 57, 2338–2343. doi:10.1016/j.matpr.2022.01.190.
[6] Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.
[7] Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.
[8] Akhtar, M. N., Bani-Hani, K. A., Akhtar, J. N., Khan, R. A., Nejem, J. K., & Zaidi, K. (2022). Flyash-based bricks: an environmental savior”a critical review. Journal of Material Cycles and Waste Management, 24(5), 1663–1678. doi:10.1007/s10163-022-01436-3.
[9] Alhajiri, A. M., & Akhtar, M. N. (2023). Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review. Civil Engineering Journal, 9(10), 2612–2629. doi:10.28991/CEJ-2023-09-10-017.
[10] Ahmad Khan, R., Nisar Akhtar, J., Ahmad Khan, R., & Nadeem Akhtar, M. (2023). Experimental study on fine-crushed stone dust a solid waste as a partial replacement of cement. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.222.
[11] Akhtar, M. N., Bani-Hani, K. A., Malkawi, D. A. H., & Malkawi, A. I. H. (2023). Porous Asphalt Mix Design Pavement by Incorporating a Precise Proportion of Recycled Coarse Aggregate. International Journal of Pavement Research and Technology, 1–12. doi:10.1007/s42947-023-00406-8.
[12] Akhtar, M. N., Husein Malkawi, D. A., Bani-Hani, K. A., & Husein Malkawi, A. I. (2023). Durability Assessment of Sustainable Mortar by Incorporating the Combination of Solid Wastes: An Experimental Study. Civil Engineering Journal, 9(11), 2770–2786. doi:10.28991/CEJ-2023-09-11-09.
[13] Kaniraj, S. R., & Gayathri, V. (2003). Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions. Geotextiles and Geomembranes, 21(3), 123-149. doi:10.1016/S0266-1144(03)00005-0.
[14] Akhtar, M. N. (2012). Role of soil mechanics in civil engineering. International Journal of Emerging trends in Engineering and Development, 2(6), 104-111.
[15] Akhtar, M. N., Hattamleh, O., & Akhtar, J. N. (2017). Feasibility of coal fly ash based bricks and roof tiles as construction materials: A review. MATEC Web of Conferences, 120, 3008. doi:10.1051/matecconf/201712003008.
[16] Kamaruddin, M. A., Abdullah, M. M. A., Zawawi, M. H., & Zainol, M. R. R. A. (2017). Potential use of plastic waste as construction materials: Recent progress and future prospect. IOP Conference Series: Materials Science and Engineering, 267(1), 12011. doi:10.1088/1757-899X/267/1/012011.
[17] Kryeziu, D., Selmani, F., Mujaj, A., & Kondi, I. (2023). Recycled concrete aggregates: a promising and sustainable option for the construction industry. Journal of Human, Earth, and Future, 4(2), 166-180. doi:10.28991/HEF-2023-04-02-03.
[18] Akhtar, M., Khan, M., & Akhtar, J. (2014). Use of the Falling-head Method to Assess Permeability of Fly Ash Based Roof Tiles with Waste Polythene Fibre. International Journal of Scientific & Engineering Research, 5(12), 476–483.
[19] Akhtar, M. N., Akhtar, J., Hattamleh, O. H. Al, & Halahla, A. M. (2016). Sustainable Fly Ash Based Roof Tiles with Waste Polythene Fibre: An Experimental Study. Open Journal of Civil Engineering, 6(2), 314–327. doi:10.4236/ojce.2016.62026.
[20] Padgelwar, S., Nandan, A., & Mishra, A. K. (2021). Plastic waste management and current scenario in India: a review. International Journal of Environmental Analytical Chemistry, 101(13), 1894–1906. doi:10.1080/03067319.2019.1686496.
[21] Hossain, R., Islam, M. T., Shanker, R., Khan, D., Locock, K. E. S., Ghose, A., Schandl, H., Dhodapkar, R., & Sahajwalla, V. (2022). Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy. Sustainability, 14(8), 4425. doi:10.3390/su14084425.
[22] Faraca, G., & Astrup, T. (2019). Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388–398. doi:10.1016/j.wasman.2019.06.038.
[23] Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, 330. doi:10.1016/j.cscm.2020.e00330.
[24] Choi, Y. W., Moon, D. J., Chung, J. S., & Cho, S. K. (2005). Effects of waste PET bottles aggregate on the properties of concrete. Cement and Concrete Research, 35(4), 776–781. doi:10.1016/j.cemconres.2004.05.014.
[25] Akhtar, M., Halahla, A., & Almasri, A. (2021). Experimental study on compressive strength of recycled aggregate concrete under high temperature. SDHM Structural Durability and Health Monitoring, 15(4), 335–348. doi:10.32604/sdhm.2021.015988.
[26] Akçaözoǧlu, S., Atiş, C. D., & Akçaözoǧlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. doi:10.1016/j.wasman.2009.09.033.
[27] Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302–1308. doi:10.1016/j.conbuildmat.2013.06.041.
[28] Saikia, N., & De Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236–244. doi:10.1016/j.conbuildmat.2013.11.049.
[29] Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group, (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. doi:10.7326/0003-4819-151-4-200908180-00135.
[30] Félix, M., Martín-Alfonso, J. E., Romero, A., & Guerrero, A. (2014). Development of albumen/soy biobased plastic materials processed by injection molding. Journal of Food Engineering, 125, 7-16. doi:10.1016/j.jfoodeng.2013.10.018.
[31] PlasticsEurope. (2016). Plastics”The Facts 2016: An Analysis of European Plastics Production, Demand and Waste Data. PlasticsEurope, Brussels, Belgium.
[32] Wu, C., Nahil, M. A., Miskolczi, N., Huang, J., & Williams, P. T. (2014). Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environmental Science and Technology, 48(1), 819–826. doi:10.1021/es402488b.
[33] Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. doi:10.1016/j.enconman.2016.02.037.
[34] Govindan, S., Ramos, M., & Al Jumaily, A. M. (2023). A Review of Biodegradable Polymer Blends and Polymer Composite for Flexible Food Packaging Application. Materials Science Forum, 1094, 51–60. doi:10.4028/p-DC7WkH.
[35] Benítez, A., Sánchez, J. J., Arnal, M. L., Müller, A. J., Rodríguez, O., & Morales, G. (2013). Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polymer Degradation and Stability, 98(2), 490–501. doi:10.1016/j.polymdegradstab.2012.12.011.
[36] Nomadolo, N., Mtibe, A., Ofosu, O., Mekoa, C., Letwaba, J., & Muniyasamy, S. (2024). The Effect of Mechanical Recycling on the Thermal, Mechanical, and Chemical Properties of Poly (Butylene Adipate-Co-Terephthalate) (PBAT), Poly (Butylene Succinate) (PBS), Poly (Lactic Acid) (PLA), PBAT-PBS Blend and PBAT-TPS Biocomposite. Journal of Polymers and the Environment, 1–16. doi:10.1007/s10924-023-03151-y.
[37] Popović, K., нivanović, S., & Jevtić, I. (2024). Biopolymer Packaging Materials in the Pharmaceutical Industry. AIDASCO Reviews, 2(1), 46–56. doi:10.59783/aire.2024.43.
[38] Perez Bravo, J. J., Gerbehaye, C., Raquez, J. M., & Mincheva, R. (2024). Recent Advances in Solid-State Modification for Thermoplastic Polymers: A Comprehensive Review. Molecules, 29(3), 667. doi:10.3390/molecules29030667.
[39] Chaudhari, U. S., Lin, Y., Thompson, V. S., Handler, R. M., Pearce, J. M., Caneba, G., Muhuri, P., Watkins, D., & Shonnard, D. R. (2021). Systems Analysis Approach to Polyethylene Terephthalate and Olefin Plastics Supply Chains in the Circular Economy: A Review of Data Sets and Models. ACS Sustainable Chemistry and Engineering, 9(22), 7403–7421. doi:10.1021/acssuschemeng.0c08622.
[40] Trejo-Carbajal, N., Ambriz-Luna, K. I., & Herrera-González, A. M. (2022). Efficient method and mechanism of depolymerization of PET under conventional heating and microwave radiation using t-BuNH2/Lewis acids. European Polymer Journal, 175, 111388. doi:10.1016/j.eurpolymj.2022.111388.
[41] Martínez-García, R., Sánchez de Rojas, M. I., Jagadesh, P., López-Gayarre, F., Morán-del-Pozo, J. M., & Juan-Valdes, A. (2022). Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Studies in Construction Materials, 16, 1050. doi:10.1016/j.cscm.2022.e01050.
[42] Smith, A. (2020). Ultraviolet Photo-Chemical Degradation of Polyethylene Terephthalate for Use as an Alternative Recycling Method. Ph.D. Thesis, Illinois Institute of Technology, Chicago, United States.
[43] Ferreira, M. M., da Silva, E. A., Cotting, F., & Lins, V. de F. C. (2021). UV weathering and performance of a novel corrosion protective coating on steel made from recycled polyethylene terephthalate (PET). Corrosion Engineering Science and Technology, 56(3), 199–209. doi:10.1080/1478422X.2020.1836880.
[44] Bharadwaj, A., Yadav, D., & Varshney, S. (2015). Non-biodegradable waste–its impact & safe disposal. International Journal on Advanced Science, Engineering and Information Technology, 3(1), 184-191.
[45] Francis, R. (2016). Recycling of polymers: Methods, characterization and applications. In Recycling of Polymers: Methods, Characterization and Applications. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783527689002.
[46] Askar, M. K., Al-Kamaki, Y. S. S., & Hassan, A. (2023). Utilizing Polyethylene Terephthalate PET in Concrete: A Review. Polymers, 15(15), 3320. doi:10.3390/polym15153320.
[47] Bovea, M. D., Ibáñez-Forés, V., Gallardo, A., & Colomer-Mendoza, F. J. (2010). Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Management, 30(11), 2383–2395. doi:10.1016/j.wasman.2010.03.001.
[48] Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409–422. doi:10.1016/j.compositesb.2016.09.013.
[49] Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. doi:10.1016/j.wasman.2017.07.044.
[50] Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536–542. doi:10.1016/j.jhazmat.2007.06.076.
[51] Matsumura, S. (2002). Enzyme-catalyzed synthesis and chemical recycling of polyesters. Macromolecular Bioscience, 2(3), 105–126. doi:10.1002/1616-5195(20020401)2:3<105::AID-MABI105>3.0.CO;2-K.
[52] Karayannidis, G. P., & Achilias, D. S. (2007). Chemical Recycling of Poly(ethylene terephthalate). Macromolecular Materials and Engineering, 292(2), 128–146. Portico. doi:10.1002/mame.200600341.
[53] Kosmidis, V. A., Achilias, D. S., & Karayannidis, G. P. (2001). Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid. Kinetics of a phase transfer catalyzed alkaline hydrolysis. Macromolecular Materials and Engineering, 286(10), 640–647. doi:10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1.
[54] López-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Flores-Giraldo, L., & Gutiérrez-Ortiz, J. I. (2011). Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chemical Engineering Journal, 168(1), 312–320. doi:10.1016/j.cej.2011.01.031.
[55] Yang, Y., Lu, Y., Xiang, H., Xu, Y., & Li, Y. (2002). Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling. Polymer Degradation and Stability, 75(1), 185–191. doi:10.1016/S0141-3910(01)00217-8.
[56] Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. doi:10.1016/j.wasman.2009.06.004.
[57] Fisher, M. M., Mark, F. E., Kingsbury, T., Vehlow, J., & Yamawaki, T. (2005). Energy recovery in the sustainable recycling of plastics from end-of-life electrical and electronic products. Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment, 2005. doi:10.1109/isee.2005.1436999.
[58] Andrady, A. L. (2003). Plastics and the Environment. John Wiley & Sons, Hoboken, New Jersey. doi:10.1002/0471721557.
[59] Bernat, K. (2023). Post-Consumer Plastic Waste Management: From Collection and Sortation to Mechanical Recycling. Energies, 16(8), 3504. doi:10.3390/en16083504.
[60] Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype. Materials Advances, 3(4), 1974–1992. doi:10.1039/d1ma01112j.
[61] Liu, Y., Fu, W., Liu, T., Zhang, Y., & Li, B. (2022). Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery. Journal of Analytical and Applied Pyrolysis, 161, 105414. doi:10.1016/j.jaap.2021.105414.
[62] Negi, A., Hariwal, R. V., Semwal, A., Kanjilal, D., Rana, J. M. S., & Ramola, R. C. (2011). The role of electronic energy loss in PET polymer. Radiation Effects and Defects in Solids, 166(8–9), 621–627. doi:10.1080/10420150.2011.578630.
[63] Dos Santos Pereira, A. P., Da Silva, M. H. P., Lima, í‰. P., Dos Santos Paula, A., & Tommasini, F. J. (2017). Processing and characterization of PET composites reinforced with geopolymer concrete waste. Materials Research, 20, 411–420. doi:10.1590/1980-5373-MR-2017-0734.
[64] Aneke, F. I., Awuzie, B. O., Mostafa, M. M. H., & Okorafor, C. (2021). Durability assessment and microstructure of high-strength performance bricks produced from pet waste and foundry sand. Materials, 14(19), 5635. doi:10.3390/ma14195635.
[65] Lee, Z. H., Paul, S. C., Kong, S. Y., Susilawati, S., & Yang, X. (2019). Modification of Waste Aggregate PET for Improving the Concrete Properties. Advances in Civil Engineering, 2019, 1–10. doi:10.1155/2019/6942052.
[66] Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W., & Frigione, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case Studies in Construction Materials, 16, 934. doi:10.1016/j.cscm.2022.e00934.
[67] Choudhary, K., Sangwan, K. S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422–427. doi:10.1016/j.procir.2019.01.096.
[68] Benavides, P. T., Dunn, J. B., Han, J., Biddy, M., & Markham, J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 6(8), 9725–9733. doi:10.1021/acssuschemeng.8b00750.
[69] Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. doi:10.1016/j.wasman.2007.09.011.
[70] Rahimi, A. R., & Garciá, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 46. doi:10.1038/s41570-017-0046.
[71] Zare, Y. (2015). 3Recycled Polymers: Properties and Applications. Recycled Polymers: Properties and Applications, Volume 2, 2, 27.
[72] Gallop, W. A., Evans, M. G., & Mithal, A. K. (2009). U.S. Patent Application No. 12/455,322. The United States Patent and Trademark Office (USPTO), Alexandria, United States.
[73] Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. doi:10.3390/recycling2040024.
[74] Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S., & Thompson, R. C. (2013). Classify plastic waste as hazardous. Nature, 494(7436), 169–171. doi:10.1038/494169a.
[75] Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.
[76] Nandy, B., Sharma, G., Garg, S., Kumari, S., George, T., Sunanda, Y., & Sinha, B. (2015). Recovery of consumer waste in India - A mass flow analysis for paper, plastic and glass and the contribution of households and the informal sector. Resources, Conservation and Recycling, 101, 167–181. doi:10.1016/j.resconrec.2015.05.012.
[77] Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3(4), 443–461. doi:10.1007/s42114-020-00190-0.
[78] Reis, J. M. L., & Carneiro, E. P. (2012). Evaluation of PET waste aggregates in polymer mortars. Construction and Building Materials, 27(1), 107–111. doi:10.1016/j.conbuildmat.2011.08.020.
[79] Spósito, F. A., Higuti, R. T., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Assunçí£o, C. C., Bortoletto, M., Silva, R. G., & Fioriti, C. F. (2020). Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime. Journal of Building Engineering, 32, 101506. doi:10.1016/j.jobe.2020.101506.
[80] da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.
[81] Abed, J. M., Khaleel, B. A., Aldabagh, I. S., & Sor, N. H. (2021). The effect of recycled plastic waste polyethylene terephthalate (PET) on characteristics of cement mortar. Journal of Physics: Conference Series, 1973(1), 12121. doi:10.1088/1742-6596/1973/1/012121.
[82] da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.
[83] Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management, 30(11), 2312–2320. doi:10.1016/j.wasman.2010.03.028.
[84] Dumitrescu, O., RopotÇŽ, I., Bratu, M., & Muntean, M. (2011). Reuse of pet waste as thermoplastic composites. Environmental Engineering and Management Journal, 10(8), 1179–1181. doi:10.30638/eemj.2011.169.
[85] Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Ahmadinia, E. (2012). Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt. Construction and Building Materials, 36, 984–989. doi:10.1016/j.conbuildmat.2012.06.015.
[86] Ge, Z., Sun, R., Zhang, K., Gao, Z., & Li, P. (2013). Physical and mechanical properties of mortar using waste Polyethylene Terephthalate bottles. Construction and Building Materials, 44, 81–86. doi:10.1016/j.conbuildmat.2013.02.073.
[87] Gürü, M., Çubuk, M. K., Arslan, D., Farzanian, S. A., & Bilici, I. (2014). An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. Journal of Hazardous Materials, 279, 302–310. doi:10.1016/j.jhazmat.2014.07.018.
[88] Corinaldesi, V., Donnini, J., & Nardinocchi, A. (2015). Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Construction and Building Materials, 94, 337–345. doi:10.1016/j.conbuildmat.2015.07.069.
[89] Sojobi, A. O., Nwobodo, S. E., & Aladegboye, O. J. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1), 1133480. doi:10.1080/23311916.2015.1133480.
[90] Jassim, A. K. (2017). Recycling of Polyethylene Waste to Produce Plastic Cement. Procedia Manufacturing, 8, 635–642. doi:10.1016/j.promfg.2017.02.081.
[91] Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. doi:10.1016/j.conbuildmat.2017.11.127.
[92] Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., & Maghool, F. (2019). Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 221, 200–209. doi:10.1016/j.conbuildmat.2019.06.047.
[93] Perca Callomamani, L. A., Hashemian, L., & Sha, K. (2020). Laboratory Investigation of the Performance Evaluation of Fiber-Modified Asphalt Mixes in Cold Regions. Transportation Research Record, 2674(7), 323–335. doi:10.1177/0361198120922213.
[94] Muralidharan, R., Park, T., Yang, H. M., Lee, S. Y., Subbiah, K., & Lee, H. S. (2021). Review of the effects of supplementary cementitious materials and chemical additives on the physical, mechanical and durability properties of hydraulic concrete. Materials, 14(23), 7270. doi:10.3390/ma14237270.
[95] Ramzi, S., & Hajiloo, H. (2022). The effects of supplementary cementitious materials (SCMs) on the residual mechanical properties of concrete after exposure to high temperatures. Buildings, 13(1), 103. doi:10.3390/buildings13010103.
[96] Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A. F., Özkılıç, Y., Sabri, M., & Sergeev, V. (2023). Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates. Frontiers in Materials, 10, 1101146. doi:10.3389/fmats.2023.1101146.
[97] Mohammed, A. A. (2017). Modelling the mechanical properties of concrete containing PET waste aggregate. Construction and Building Materials, 150, 595–605. doi:10.1016/j.conbuildmat.2017.05.154.
[98] Limami, H., Manssouri, I., Cherkaoui, K., & Khaldoun, A. (2020). Study of the suitability of unfired clay bricks with polymeric HDPE & PET wastes additives as a construction material. Journal of Building Engineering, 27, 100956. doi:10.1016/j.jobe.2019.100956.
[99] Hameed, A. M., & Ahmed, B. A. F. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. doi:10.1016/j.egypro.2018.11.160.
[100] Samsudin, M. A., Manaf, A. F. A., Aznan, M. F. F., Zuki, S. S. M., Ramasamy, S., Azmi, M. A. M., & others. (2021). Investigation on Polyethylene Terephthalate (PET) Waste Fiber Performances in Concrete Material. Recent Trends in Civil Engineering and Built Environment, 2(1), 682–690.
[101] Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, 482. doi:10.1016/j.cscm.2020.e00482.
[102] Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27(1), 1–9. doi:10.24200/sci.2018.20334.
[103] Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.
[104] Campanhí£o, A. F., Marvila, M. T., de Azevedo, A. R. G., da Silva, T. R., Fediuk, R., & Vatin, N. (2022). Recycled pet sand for cementitious mortar. Materials, 15(1), 273. doi:10.3390/ma15010273.
[105] Kozul, R., & Darwin, D. (1997). Effects of Aggregate Type, Size and Content on Concrete Strength and Fracture Energy. SM Report No. 43, University of Kansas Center for Research, Kansas, United States.
[106] Guendouz, M., Debieb, F., Boukendakdji, O., Kadri, E. H., Bentchikou, M., & Soualhi, H. (2016). Use of plastic waste in sand concrete. Journal of Materials and Environmental Science, 7(2), 382–389.
[107] Pereira De Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. doi:10.1016/j.conbuildmat.2010.11.044.
[108] Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. doi:10.1016/j.cemconcomp.2007.02.002.
[109] Chowdhury, S., Maniar, A. T., & Suganya, O. (2013). Polyethylene Terephthalate (PET) Waste as Building Solution. International Journal of Chemical, Environmental & Biological Sciences, 1(5), 2320–4087.
[110] Tang, R., Wei, Q., Zhang, K., Jiang, S., Shen, Z., Zhang, Y., & Chow, C. W. K. (2022). Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete. Journal of Building Engineering, 57, 104948. doi:10.1016/j.jobe.2022.104948.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.