Local Scour around Different-Shaped Bridge Piers
Downloads
Doi: 10.28991/CEJ-2024-010-06-019
Full Text: PDF
Downloads
[2] Najafzadeh, M., & Oliveto, G. (2021). More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Computing, 25, 5723-5746. doi:10.1007/s00500-020-05567-3.
[3] Kashmoola, A., Ismael, A., & Suleiman, S. (2019). Comparison of Bridge Piers Shapes According to Local Scour Countermeasures. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 6, 171–180.
[4] Oliveto, G., & Hager, W. H. (2005). Further Results to Time-Dependent Local Scour at Bridge Elements. Journal of Hydraulic Engineering, 131(2), 97–105. doi:10.1061/(asce)0733-9429(2005)131:2(97).
[5] Pandey, M., Oliveto, G., Pu, J. H., Sharma, P. K., & Ojha, C. S. P. (2020). Pier scour prediction in non-uniform gravel beds. Water (Switzerland), 12(6), 1696. doi:10.3390/W12061696.
[6] Zarrati, A. R., Gholami, H., & Mashahir, M. B. (2004). Application of collar to control scouring around rectangular bridge piers. Journal of Hydraulic Research, 42(1), 97-103. doi:10.1080/00221686.2004.9641188.
[7] Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.
[8] Etemad-Shahidi, A., Bonakdar, L., & Jeng, D. S. (2015). Estimation of scour depth around circular piers: Applications of model tree. Journal of Hydroinformatics, 17(2), 226–238. doi:10.2166/hydro.2014.151.
[9] Fael, C., Lança, R., & Cardoso, A. (2016). Effect of pier shape and pier alignment on the equilibrium scour depth at single piers. International Journal of Sediment Research, 31(3), 244–250. doi:10.1016/j.ijsrc.2016.04.001.
[10] Habib, I. A., Mohtar, W. H. M. W., Elsaiad, A., & El-Shafie, A. (2018). Nose-angle bridge piers as alternative countermeasures for local scour reduction. Baltic Journal of Road and Bridge Engineering, 13(2), 110–120. doi:10.7250/bjrbe.2018-13.405.
[11] Qi, M., Li, J., & Chen, Q. (2016). Comparison of existing equations for local scour at bridge piers: parameter influence and validation. Natural Hazards, 82(3), 2089–2105. doi:10.1007/s11069-016-2287-z.
[12] Sabbagh-Yazdi, S.-R., & Bavandpour, M. (2021). Introducing ring collars and effective spiral threading elevation for cylindrical pier scour control. Marine Georesources & Geotechnology, 40(6), 639–654. doi:10.1080/1064119x.2021.1922555.
[13] Abdulkathum, S., Al-Shaikhli, H. I., Al-Abody, A. A., & Hashim, T. M. (2023). Statistical Analysis Approaches in Scour Depth of Bridge Piers. Civil Engineering Journal (Iran), 9(1), 143–153. doi:10.28991/CEJ-2023-09-01-011.
[14] Baranwal, A., Shankar Das, B., & Setia, B. (2023). A comparative study of scour around various shaped bridge pier. Engineering Research Express, 5(1), 15052. doi:10.1088/2631-8695/acbfa1.
[15] Dargahi, B. (1990). Controlling Mechanism of Local Scouring. Journal of Hydraulic Engineering, 116(10), 1197–1214. doi:10.1061/(asce)0733-9429(1990)116:10(1197).
[16] Huda, M. B., Lone, M. A., Rather, N. A., & Chadee, A. A. (2023). Scouring around different shapes of bridge pier. Water Practice and Technology, 18(7), 1608–1616. doi:10.2166/wpt.2023.108.
[17] Chiew, Y. (1992). Scour Protection at Bridge Piers. Journal of Hydraulic Engineering, 118(9), 1260–1269. doi:10.1061/(asce)0733-9429(1992)118:9(1260).
[18] Li, J., & Tao, J. (2015). Streamlining of Bridge Piers as Scour Countermeasures Optimization of Cross Sections. Transportation Research Record, 2521(1), 162–171. doi:10.3141/2521-17.
[19] Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. doi:10.1080/15715124.2017.1394315.
[20] Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments. Iowa Highway Research Board, Iowa City, United States.
[21] Farooq, R., & Ghumman, A. R. (2019). Impact assessment of pier shape and modifications on scouring around bridge pier. Water (Switzerland), 11(9), 1761. doi:10.3390/w11091761.
[22] Keshavarz, A., Vaghefi, M., & Ahmadi, G. (2022). Effect of the Shape and Position of the Bridge Pier on the Bed Changes in the Sharp 180-Degree Bend. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(3), 2449–2467. doi:10.1007/s40996-021-00787-5.
[23] Ismael, A., Gunal, M., & Hussein, H. (2015). Effect of Bridge Pier Position on Scour Reduction According to Flow Direction. Arabian Journal for Science and Engineering, 40(6), 1579–1590. doi:10.1007/s13369-015-1625-x.
[24] Melville, B. W. (1997). Pier and Abutment Scour: Integrated Approach. Journal of Hydraulic Engineering, 123(2), 125–136. doi:10.1061/(asce)0733-9429(1997)123:2(125).
[25] National Academies of Sciences, Engineering, and Medicine. (2011). Evaluation of Bridge Scour Research: Pier Scour Processes and Predictions. The National Academies Press, Washington, United States. doi:10.17226/22886.
[26] Habibi, K., Fard, F. E., Pari, S. A. A., & Shafai-Bejestan, M. (2024). Experimental and theoretical study of sediment scour around angled bridge piers. Canadian Journal of Civil Engineering. doi:10.1139/cjce-2023-0277.
[27] Hoffmans, G. J. C. M., & Verheij, H. J. (2009). Scour Manual. Routledge, London, United Kingdom. doi:10.1201/9780203740132.
[28] do Carmo, J. A. (2005). Experimental study on local scour around bridge piers in rivers. WIT Transactions on Ecology and the Environment, 83. doi:10.2495/RM050011.
[29] Ahmad, N., Melville, B., Mohammad, T., Ali, F., & Yusuf, B. (2016). Clear-water scour at long skewed bridge piers. Journal of the Chinese Institute of Engineers, 40(1), 10–18. doi:10.1080/02533839.2016.1259021.
[30] Raudkivi, A. J. (1986). Functional Trends of Scour at Bridge Piers. Journal of Hydraulic Engineering, 112(1), 1–13. doi:10.1061/(asce)0733-9429(1986)112:1(1).
[31] Melville, B. W., & Sutherland, A. J. (1988). Design Method for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. doi:10.1061/(asce)0733-9429(1988)114:10(1210).
[32] Richardson, E. V., & Davis, S. R. (2001). Evaluating scour at bridges (No. FHWA-NHI-01-001). Federal Highway Administration, Office of Bridge Technology, Washington, United States.
[33] Chiew, Y. M. (1984). Local scour at bridge piers. PhD Thesis, University of Auckland, Auckland, New Zealand.
[34] Abudallah Habib, I., Wan Mohtar, W. H. M., Muftah Shahot, K., El-Shafie, A., & Abd Manan, T. S. B. (2021). Bridge failure prevention: An overview of self-protected pier as flow altering countermeasures for scour Protection. Civil Engineering Infrastructures Journal, 54(1), 1–22. doi:10.22059/CEIJ.2020.292296.1627.
[35] Melville, B. (2008, November). The physics of local scour at bridge piers. Fourth International Conference on Scour and Erosion, 5-7 November, 2008, Tokyo, Japan.
[36] Ettema, R., Mostafa, E. A., Melville, B. W., & Yassin, A. A. (1998). Local Scour at Skewed Piers. Journal of Hydraulic Engineering, 124(7), 756–759. doi:10.1061/(asce)0733-9429(1998)124:7(756).
[37] Fenocchi, A., & Natale, L. (2016). Using Numerical and Physical Modeling to Evaluate Total Scour at Bridge Piers. Journal of Hydraulic Engineering, 142(3). doi:10.1061/(asce)hy.1943-7900.0001096.
[38] Peng Yu, & Zhu, L. (2020). Numerical simulation of local scour around bridge piers using novel inlet turbulent boundary conditions. Ocean Engineering, 218, 108166. doi:10.1016/j.oceaneng.2020.108166.
[39] Shen, H. W., Schneider, V. R., & Karaki, S. (1969). Local Scour Around Bridge Piers. Journal of the Hydraulics Division, 95(6), 1919–1940. doi:10.1061/jyceaj.0002197.
[40] Hancu, S. (1971). On the calculation of local scours in the area of bridge piers. Proceedings of the 14th IAHR congress, 29 August-3 September, 1971, Paris, France. (In French).
[41] Sheppard, D. M., Odeh, M., & Glasser, T. (2004). Large Scale Clear-Water Local Pier Scour Experiments. Journal of Hydraulic Engineering, 130(10), 957–963. doi:10.1061/(asce)0733-9429(2004)130:10(957).
[42] Breusers, H. N. C., Nicollet, G., & Shen, H. W. (1977). Erosion locale autour des piles cylindriques. Journal of Hydraulic Research, 15(3), 211–252. doi:10.1080/00221687709499645.
[43] Heza, Y. B. M., Soliman, A. M., & Saleh, S. A. (2007). Prediction of the scour hole geometry around exposed bridge circular-pile foundation. Journal of Engineering and Applied Science-Cairo, 54(4), 375.
[44] Richardson, J. E., & Panchang, V. G. (1998). Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers. Journal of Hydraulic Engineering, 124(5), 530–540. doi:10.1061/(asce)0733-9429(1998)124:5(530).
[45] Kumar, V., Baranwal, A., & Das, B. S. (2024). Prediction of local scour depth around bridge piers: modelling based on machine learning approaches. Engineering Research Express, 6(1), 15009. doi:10.1088/2631-8695/ad08ff.
[46] Quinlan, J. R. (1992). Learning with continuous classes. 5th Australian joint conference on artificial intelligence, 16-18 November, 1992, Hobart, Australia.
[47] Pal, M., Singh, N. K., & Tiwari, N. K. (2012). M5 model tree for pier scour prediction using field dataset. KSCE Journal of Civil Engineering, 16(6), 1079–1084. doi:10.1007/s12205-012-1472-1.
[48] Hassan, Z. F., Karim, I. R., & Al-Shukur, A. H. K. (2020). Effect of interaction between bridge piers on local scouring in cohesive soils. Civil Engineering Journal (Iran), 6(4), 659–669. doi:10.28991/cej-2020-03091498.
[49] Khaple, S., Hanmaiahgari, P., & Dey, S. (2014). Studies on the effect of an upstream pier as a scour protection measure of a downstream bridge pier. River Flow 2014, 2047–2052, CRC Press, Boca Raton, United States. doi:10.1201/b17133-273.
[50] Amini Baghbadorani, D., Beheshti, A. A., & Ataie-Ashtiani, B. (2017). Scour hole depth prediction around pile groups: review, comparison of existing methods, and proposition of a new approach. Natural Hazards, 88(2), 977–1001. doi:10.1007/s11069-017-2900-9.
[51] Hosseini, R., & Amini, A. (2015). Scour depth estimation methods around pile groups. KSCE Journal of Civil Engineering, 19(7), 2144–2156. doi:10.1007/s12205-015-0594-7.
[52] Keshavarzi, A., Shrestha, C. K., Melville, B., Khabbaz, H., Ranjbar-Zahedani, M., & Ball, J. (2018). Estimation of maximum scour depths at upstream of front and rear piers for two in-line circular columns. Environmental Fluid Mechanics, 18(2), 537–550. doi:10.1007/s10652-017-9572-6.
[53] Khaple, S., Hanmaiahgari, P. R., Gaudio, R., & Dey, S. (2017). Interference of an upstream pier on local scour at downstream piers. Acta Geophysica, 65(1), 29–46. doi:10.1007/s11600-017-0004-2.
[54] Selamoğlu, M. (2015). Modeling temporal variation of scouring at dual bridge piers. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey.
[55] Ravanfar, S. M., Mohammadpour, R., & Sabzevari, T. (2023). Experimental study of local scour around non-uniform twin piers. International Journal of River Basin Management, 2023, 1–16. doi:10.1080/15715124.2023.2167823.
[56] Elliott, K. R., & Baker, C. J. (1985). Effect of Pier Spacing on Scour Around Bridge Piers. Journal of Hydraulic Engineering, 111(7), 1105–1109. doi:10.1061/(asce)0733-9429(1985)111:7(1105).
[57] Ataie-Ashtiani, B., & Beheshti, A. A. (2006). Experimental Investigation of Clear-Water Local Scour at Pile Groups. Journal of Hydraulic Engineering, 132(10), 1100–1104. doi:10.1061/(asce)0733-9429(2006)132:10(1100).
[58] Liu, M. ming, Wang, H. cheng, Tang, G. qiang, Shao, F. fei, & Jin, X. (2022). Investigation of local scour around two vertical piles by using numerical method. Ocean Engineering, 244, 110405. doi:10.1016/j.oceaneng.2021.110405.
[59] Dey, S., & Sarkar, A. (2006). Scour Downstream of an Apron Due to Submerged Horizontal Jets. Journal of Hydraulic Engineering, 132(3), 246–257. doi:10.1061/(asce)0733-9429(2006)132:3(246).
[60] Yang, Y., Melville, B. W., Macky, G. H., & Shamseldin, A. Y. (2019). Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water (Switzerland), 11(8), 1530. doi:10.3390/w11081530.
[61] Ettema, R. (1980). Scour at Bridge Piers. Ph.D. Thesis, University of Auckland, Auckland, New Zealand.
[62] Neill, C.R. (1967) Mean Velocity Criterion for Scour of Coarse Uniform Bed Material. Proceeding of the 12th Congress of the International Association of Hydraulics Research, 11-14 September, 1967, Colorado State University, Fort Collins, United States.
[63] Raudkivi, A. J., & Ettema, R. (1983). Clear"Water Scour at Cylindrical Piers. Journal of Hydraulic Engineering, 109(3), 338–350. doi:10.1061/(asce)0733-9429(1983)109:3(338).
[64] Ettema, R., Melville, B. W., & Barkdoll, B. (1998). Scale Effect in Pier-Scour Experiments. Journal of Hydraulic Engineering, 124(6), 639–642. doi:10.1061/(asce)0733-9429(1998)124:6(639).
[65] Jayaraman, S. (1995). Hydraulic modelling. Indian institute of Technology Madras, Chennai, India.
[66] Dey, S. (2014). Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Germany. doi:10.1007/978-3-642-19062-9.
[67] Alipour, A., Yarahmadi, J., & Mahdavi, M. (2014). Comparative Study of M5 Model Tree and Artificial Neural Network in Estimating Reference Evapotranspiration Using MODIS Products. Journal of Climatology, 1–11. doi:10.1155/2014/839205.
[68] Etemad-Shahidi, A., & Ghaemi, N. (2011). Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 38(13), 1522–1527. doi:10.1016/j.oceaneng.2011.07.012.
[69] Mia, M. F., & Nago, H. (2003). Design Method of Time-Dependent Local Scour at Circular Bridge Pier. Journal of Hydraulic Engineering, 129(6), 420–427. doi:10.1061/(asce)0733-9429(2003)129:6(420).
[70] Sheppard, D. M., Demir, H., & Melville, B. W. (2011). Scour at wide piers and long skewed piers. Transportation Research Board, Washington, United States.
[71] Mostafa, E. A. (1994). Scour around skewed bridge piers. Alexandria University, Alexandria, Egypt.
[72] Moussa, A. M. A. (2018). Evaluation of local scour around bridge piers for various geometrical shapes using mathematical models. Ain Shams Engineering Journal, 9(4), 2571–2580. doi:10.1016/j.asej.2017.08.003.
[73] Liang, D., Gotoh, H., Scott, N., & Tang, H. (2013). Experimental Study of Local Scour around Twin Piles in Oscillatory Flows. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(5), 404–412. doi:10.1061/(asce)ww.1943-5460.0000192.
[74] Wang, H., Tang, H., Liu, Q., & Wang, Y. (2016). Local Scouring around Twin Bridge Piers in Open-Channel Flows. Journal of Hydraulic Engineering, 142(9), 06016008. doi:10.1061/(asce)hy.1943-7900.0001154.
[75] Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes. Working paper 96/23, The University of Waikato, Hamilton, New Zealand.
[76] Pasha, M. M., Mahmood, A. H., & Shams, S. (2016). An analysis of scouring effects on various shaped bridge piers. Brunei Darussalam Journal of Technology and Commerce, 29-42.
[77] Talib, A., Obeid, Z. H., & Hameed, H. K. (2016). New imperial equation for local scour around various bridge piers shapes. International Journal of Science and Research (IJSR), 5(9), 654-658.
[78] Chabert, J., & Engeldinger, P. (1956). Study of Scour at Bridge Piers. Bureau Central d'Etudes les Equipment d'Outre-Mer, Laboratoire National d'Hydraulique, Chatou, France.
[79] Bhattacharya, B., Price, R. K., & Solomatine, D. P. (2007). Machine Learning Approach to Modeling Sediment Transport. Journal of Hydraulic Engineering, 133(4), 440–450. doi:10.1061/(asce)0733-9429(2007)133:4(440).
[80] Beg, M. (2004). Mutual interference of bridge piers on local scour. Proceedings of the Second International Conference on Scour and Erosion, 14-17 November, 2007, Singapore.
[81] Devi, G., & Kumar, M. (2022). Experimental study of the local scour around the two piers in the tandem arrangement using ultrasonic ranging transducers. Ocean Engineering, 266, 112838. doi:10.1016/j.oceaneng.2022.112838.
[82] Liang, F., Wang, C., Huang, M., & Wang, Y. (2017). Experimental observations and evaluations of formulae for local scour at pile groups in steady currents. Marine Georesources and Geotechnology, 35(2), 245–255. doi:10.1080/1064119X.2016.1147510.
[83] Malik, R., & Setia, B. (2021). Local scour around closely placed bridge piers. ISH Journal of Hydraulic Engineering, 27(4), 396–403. doi:10.1080/09715010.2018.1559772.
[84] Yang, Y., Qi, M., Wang, X., & Li, J. (2020). Experimental study of scour around pile groups in steady flows. Ocean Engineering, 195, 106651. doi:10.1016/j.oceaneng.2019.106651.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.