Seismic Resilience of Steel-Braced Frames Incorporating Steel Slit Dampers: A Review and Comparative Numerical Analysis
Downloads
Doi: 10.28991/CEJ-2024-010-04-019
Full Text: PDF
[2] Jaisee, S., Yue, F., & Ooi, Y. H. (2021). A state-of-the-art review on passive friction dampers and their applications. Engineering Structures, 235, 112022. doi:10.1016/j.engstruct.2021.112022.
[3] Rousta, A. M., Gorji Azandariani, M., Safaei Ardakani, M. A., & Shoja, S. (2022). Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers. Structures, 45, 629–644. doi:10.1016/j.istruc.2022.09.047.
[4] Javidan, M.M., & Kim, J. (2020). Steel hysteretic column dampers for seismic retrofit of soft-first-story structures. Steel and Composite Structures, (37)3, 259-272. doi:10.12989/scs.2020.37.3.259.
[5] Zahrai, S. M., & Froozanfar, M. (2019). Improving Seismic Behavior of MRFs by U-shaped Hysteretic Damper Along Diagonal Brace. International Journal of Steel Structures, 19(2), 543–558. doi:10.1007/s13296-018-0139-2.
[6] Javanmardi, A., Ghaedi, K., Ibrahim, Z., Huang, F., & Xu, P. (2020). Development of a new hexagonal honeycomb steel damper. Archives of Civil and Mechanical Engineering, 20(2), 1–19. doi:10.1007/s43452-020-00063-9.
[7] Sahoo, D. R., Singhal, T., Taraithia, S. S., & Saini, A. (2015). Cyclic behavior of shear-and-flexural yielding metallic dampers. Journal of Constructional Steel Research, 114, 247–257. doi:10.1016/j.jcsr.2015.08.006.
[8] Najari Varzaneh, M., & Hosseini, M. (2019). Cyclic Performance and Mechanical Characteristics of the Oval-shaped Damper. KSCE Journal of Civil Engineering, 23(11), 4747–4757. doi:10.1007/s12205-019-1382-6.
[9] Mousavi, H., Sabbagh-Yazdi, S.-R. & Almohammad-albakkar, M., (2021). New mathematical formula for design viscous dampers in Internal and external Scissor-Jack braces, 6th International Conference on Interdisciplinary Researches in Civil Engineering, Architecture and Urban Management in 21st Century; 17 August, 2021, Tehran, Iran.
[10] Zahrai, S. M., & Cheraghi, A. (2017). Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe. Structural Engineering and Mechanics, 64(2), 195–204. doi:10.12989/sem.2017.64.2.195.
[11] Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. doi:10.1016/j.asej.2020.04.001.
[12] Ghaedi, K. (2017). Earthquake Prediction. Earthquakes - Tectonics, Hazard and Risk Mitigation, IntechOpen, London, United Kingdom. doi:10.5772/65511.
[13] Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H., & Hanif, M. U. (2019). State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Archives of Computational Methods in Engineering, 27(2), 455–478. doi:10.1007/s11831-019-09329-9.
[14] Boardman, P. R., Wood, B. J., & Carr, A. J. (1983). Union House - a Cross Braced Structure With Energy Dissipators. Bulletin of the New Zealand National Society for Earthquake Engineering, 16(2), 83–97.
[15] Martinez-Romero, E. (1993). Experiences on the use of supplementary energy dissipators on building structures. Earthquake Spectra, 9(3), 581–625. doi:10.1193/1.1585731.
[16] Perry, C. L., Fierro, E. A., Sedarat, H., & Scholl, R. E. (1993). Seismic upgrade in San Francisco using energy dissipation devices. Earthquake Spectra, 9(3), 559–579. doi:10.1193/1.1585730.
[17] Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., & Yao, J. T. P. (1997). Structural Control: Past, Present, and Future. Journal of Engineering Mechanics, 123(9), 897–971. doi:10.1061/(asce)0733-9399(1997)123:9(897).
[18] Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243–259. doi:10.1016/S0141-0296(01)00092-X.
[19] Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. Journal of Structural Engineering, 134(1), 3–21. doi:10.1061/(asce)0733-9445(2008)134:1(3).
[20] Saaed, T. E., Nikolakopoulos, G., Jonasson, J. E., & Hedlund, H. (2015). A state-of-the-art review of structural control systems. JVC/Journal of Vibration and Control, 21(5), 919–937. doi:10.1177/1077546313478294.
[21] Li, H., & Huo, L. (2010). Advances in Structural Control in Civil Engineering in China. Mathematical Problems in Engineering, 2010, 1–23. doi:10.1155/2010/936081.
[22] Ghaedi, K., Ibrahim, Z., Adeli, H., & Javanmardi, A. (2017). Invited review: Recent developments in vibration control of building and bridge structures. Journal of Vibroengineering, 19(5), 3564–3580. doi:10.21595/jve.2017.18900.
[23] Korkmaz, S. (2011). A review of active structural control: Challenges for engineering informatics. Computers and Structures, 89(23–24), 2113–2132. doi:10.1016/j.compstruc.2011.07.010.
[24] Dargush, G. F., & Sant, R. S. (2005). Evolutionary aseismic design and retrofit of structures with passive energy dissipation. Earthquake Engineering & Structural Dynamics, 34(13), 1601–1626. doi:10.1002/eqe.497.
[25] Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal, 6(8), 1622–1651. doi:10.28991/cej-2020-03091571.
[26] Fisco, N. R., & Adeli, H. (2011). Smart structures: Part I”Active and semi-active control. Scientia Iranica, 18(3), 275–284. doi:10.1016/j.scient.2011.05.034.
[27] Fisco, N. R., & Adeli, H. (2011). Smart structures: Part II ” Hybrid control systems and control strategies. Scientia Iranica, 18(3), 285–295. doi:10.1016/j.scient.2011.05.035.
[28] Behnamfar, F., & Almohammad-albakkar, M. (2023). Development of Steel Yielding Seismic Dampers Used to Improve Seismic Performance of Structures: A Comprehensive Review. International Journal of Engineering, 36(4), 746–775. doi:10.5829/ije.2023.36.04a.13.
[29] Bakhshinezhad, S., & Mohebbi, M. (2020). Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures, 24, 678–689. doi:10.1016/j.istruc.2020.02.004.
[30] Ghabussi, A., Asgari Marnani, J., & Rohanimanesh, M. S. (2021). Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper. Structures, 31, 87–97. doi:10.1016/j.istruc.2021.01.073.
[31] Wang, W., Song, J. liang, Su, S. qing, Cai, H. li, & Zhang, R. fu. (2021). Experimental and numerical studies of an axial tension-compression corrugated steel plate damper. Thin-Walled Structures, 163, 107498. doi:10.1016/j.tws.2021.107498.
[32] Lin, K., Zhou, A., Liu, H., Liu, Y., & Huang, C. (2020). Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structures, 26, 214–223. doi:10.1016/j.istruc.2020.04.018.
[33] Ghanbari, A., Mousavi, H., Almohammad-albakkar, M., & Habibi, M. R. (2022). Seismic Responses of Multi-Storey Structures Equipped with Linear and Nonlinear Viscous Dampers: A Comparison Study. SSRN Electronic Journal, 1-22. doi:10.2139/ssrn.4253077.
[34] Setiawan, A. F., Santoso, A. K., Darmawan, M. F., Adi, A. D., & Ismanti, S. (2023). Nonlinear Analysis for Investigating Seismic Performance of a Spun Pile-Column of Viaduct Structure. Civil Engineering Journal, 9(7), 1561-1578. doi:10.28991/CEJ-2023-09-07-02.
[35] Silwal, B., Michael, R. J., & Ozbulut, O. E. (2015). A superelastic viscous damper for enhanced seismic performance of steel moment frames. Engineering Structures, 105, 152-164. doi:10.1016/j.engstruct.2015.10.005.
[36] Mousavi, H., Sabbagh Yazdi, S. R., & Almohammad-Albakkar, M. (2022). A novel method for efficient design of frame structures equipped with nonlinear viscous dampers by using computational results of cylindrical friction damper. Australian Journal of Structural Engineering, 24(1), 50–66. doi:10.1080/13287982.2022.2088055.
[37] Gjukaj, A., Salihu, F., Muriqi, A., & Cvetanovski, P. (2023). Numerical Behavior of Extended End-Plate Bolted Connection under Monotonic Loading. HighTech and Innovation Journal, 4(2), 294-308. doi:10.28991/HIJ-2023-04-02-04.
[38] Zheng, J., Zhang, C., & Li, A. (2019). Experimental investigation on the mechanical properties of curved metallic plate dampers. Applied Sciences, 10(1), 269. doi:10.3390/app10010269.
[39] Chen, S. J., & Chang, C. C. (2012). Experimental study of low yield point steel gusset plate connections. Thin-Walled Structures, 57, 62–69. doi:10.1016/j.tws.2012.03.014.
[40] Milanchian, R., & Hosseini, M. (2020). Torsional response reduction of plan-asymmetric vertical seismic isolation by appropriate distribution of viscous and viscoelastic dampers. Structures, 27, 962–974. doi:10.1016/j.istruc.2020.07.009.
[41] Xiao, Y., Zhou, Y., & Huang, Z. (2021). Efficient direct displacement-based seismic design approach for structures with viscoelastic dampers. Structures, 29, 1699–1708. doi:10.1016/j.istruc.2020.12.067.
[42] Abdul Aziz, M., Muhtasim, S., & Ahammed, R. (2022). State-of-the-art recent developments of large magnetorheological (MR) dampers: a review. Korea Australia Rheology Journal, 34(2), 105–136. doi:10.1007/s13367-022-00021-2.
[43] Saravanan, M., Goswami, R., & Palani, G. S. (2018). Replaceable Fuses in Earthquake Resistant Steel Structures: A Review. International Journal of Steel Structures, 18(3), 868–879. doi:10.1007/s13296-018-0035-9.
[44] Chen, S. J., & Jhang, C. (2006). Cyclic behavior of low yield point steel shear walls. Thin-Walled Structures, 44(7), 730–738. doi:10.1016/j.tws.2006.08.002.
[45] Ayyash, A. jbury N. A., & Hejazi, F. (2023). Development of hybrid performance-based optimization algorithm for structures equipped with vibration damper devices. Archives of Civil and Mechanical Engineering, 23(2), 123. doi:10.1007/s43452-023-00665-z.
[46] Ayyash, N., & Hejazi, F. (2022). Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm. Earthquake Engineering and Engineering Vibration, 21(2), 455–474. doi:10.1007/s11803-022-2088-1.
[47] Ahmadie Amiri, H., Najafabadi, E. P., & Estekanchi, H. E. (2018). Experimental and analytical study of Block Slit Damper. Journal of Constructional Steel Research, 141, 167–178. doi:10.1016/j.jcsr.2017.11.006.
[48] Dargush, G., & Soong, T. (1997). Passive Energy Dissipation and Active Control. Handbook of Structural Engineering, Second Edition, 1-28.
[49] Christopoulos, C., & Filiatrault, A. (2006). Principles of passive supplemental damping and seismic. IUSS Press, Pavia, Italy.
[50] Fukumoto, T. (1989). A Study on steel Damper with Honeycomb Shaped-Openings. Annual Meeting (Summaries of AIJ), Architectural Institute of Japan, Tokyo, Japan.
[51] Naoki, T. (1991). A study on Steel Plate D. with Honeycomb-s. Openings s. to Low Cycle F. AIJ-37, Architectural Institute of Japan, Tokyo, Japan.
[52] Wada, A., Huang, Y. H., Yamada, T., Ono, Y., Sugiyama, S., Baba, M., & Miyabara, T. (1997). Actual size and real time speed tests for hysteretic steel damper. Proceedings of Stessa, 97, 778–785.
[53] Amadeo, B. C., OH, S. H., & Akiyama, H. (1998). Ultimate Energy Absorption Capacity of Slit-Type Steel Plates Subjected To Shear Deformations. Journal of Structural and Construction Engineering (Transactions of AIJ), 63(503), 139–147. doi:10.3130/aijs.63.139_1.
[54] Javidan, M. M., & Kim, J. (2024). An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures. Steel and Composite Structures, 50(6), 721–734. doi:10.12989/scs.2024.50.6.721.
[55] Srisuwan, T., & Yooprasertchai, E. (2024). Effects of unbonded prestressing steel tendons and slit dampers on the seismic behavior of precast concrete beam-column joints. Structures, 59. doi:10.1016/j.istruc.2023.105721.
[56] Payawal, J. M. G., & Kim, D. K. (2023). Evaluation of the Seismic Performance of Single-Plate Metallic Slit Dampers Using Experimental and Numerical Data. Buildings, 13(9), 2188. doi:10.3390/buildings13092188.
[57] Lee, C. H., Ju, Y. K., Min, J. K., Lho, S. H., & Kim, S. D. (2015). Non-uniform steel strip dampers subjected to cyclic loadings. Engineering Structures, 99, 192–204. doi:10.1016/j.engstruct.2015.04.052.
[58] González-Sanz, G., Escolano-Margarit, D., & Benavent-Climent, A. (2020). A new stainless-steel tube-in-tube damper for seismic protection of structures. Applied Sciences, 10(4), 1410. doi:10.3390/app10041410.
[59] Zheng, J., Li, A., & Guo, T. (2015). Analytical and experimental study on mild steel dampers with non-uniform vertical slits. Earthquake Engineering and Engineering Vibration, 14(1), 111–123. doi:10.1007/s11803-015-0010-9.
[60] Oh, S. H. (1998). Seismic Design of Energy Dissipating Multi-Story Frame with Flexible-Stiff Mixed Type Connection, Ph.D. Thesis, Tokyo University, Japan.
[61] Chan, R. W. K., & Albermani, F. (2008). Experimental study of steel slit damper for passive energy dissipation. Engineering Structures, 30(4), 1058–1066. doi:10.1016/j.engstruct.2007.07.005.
[62] Saffari, H., Hedayat, A. A., & Nejad, M. P. (2013). Post-Northridge connections with slit dampers to enhance strength and ductility. Journal of Constructional Steel Research, 80, 138-152. doi:10.1016/j.jcsr.2012.09.023.
[63] Oh, S. H., Kim, Y. J., & Ryu, H. S. (2009). Seismic performance of steel structures with slit dampers. Engineering Structures, 31(9), 1997–2008. doi:10.1016/j.engstruct.2009.03.003.
[64] Karavasilis, T. L., Kerawala, S., & Hale, E. (2012). Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings. Journal of Constructional Steel Research, 70, 358–367. doi:10.1016/j.jcsr.2011.10.010.
[65] Hedayat, A. A. (2015). Prediction of the force displacement capacity boundary of an unbuckled steel slit damper. Journal of Constructional Steel Research, 114, 30–50. doi:10.1016/j.jcsr.2015.07.003.
[66] Askariani, S. S., Garivani, S., & Aghakouchak, A. A. (2020). Application of slit link beam in eccentrically braced frames. Journal of Constructional Steel Research, 170, 106094. doi:10.1016/j.jcsr.2020.106094.
[67] Roeder, C. W., & Popov, E. P. (1978). Eccentrically Braced Steel Frames for Earthquakes. Journal of the Structural Division (ASCE), 104(3), 391–412. doi:10.1061/jsdeag.0004875.
[68] Bastami, M., & Ahmady Jazany, R. (2018). Development of Eccentrically Interconnected Braced Frame (EIC-BF) for seismic regions. Thin-Walled Structures, 131, 451–463. doi:10.1016/j.tws.2018.07.021.
[69] Johnson S.M. (2005). Improved seismic performance of special concentrically braced frames. Master Thesis, University of Washington., Seattle, United States.
[70] Metelli, G. (2013). Theoretical and experimental study on the cyclic behaviour of X braced steel frames. Engineering Structures, 46, 763–773. doi:10.1016/j.engstruct.2012.08.021.
[71] Jazany, R. A., Hajirasouliha, I., & Farshchi, H. (2013). Influence of masonry infill on the seismic performance of concentrically braced frames. Journal of Constructional Steel Research, 88, 150–163. doi:10.1016/j.jcsr.2013.05.009.
[72] Tremblay, R. (2001). Seismic behavior and design of concentrically braced steel frames. Engineering Journal, 38(3), 148–166. doi:10.62913/engj.v38i3.761.
[73] Tremblay, R. (2002). Inelastic seismic response of steel bracing members. Journal of Constructional Steel Research, 58(5–8), 665–701. doi:10.1016/S0143-974X(01)00104-3.
[74] Lumpkin, E. J., Hsiao, P. C., Roeder, C. W., Lehman, D. E., Tsai, C. Y., Wu, A. C., Wei, C. Y., & Tsai, K. C. (2012). Investigation of the seismic response of three-story special concentrically braced frames. Journal of Constructional Steel Research, 77, 131–144. doi:10.1016/j.jcsr.2012.04.003.
[75] Karzad, A. S., Al-Sadoon, Z. A., Sagheer, A., & AlHamaydeh, M. (2022). Experimental and Nonlinear Finite Element Analysis Data for an Innovative Buckling Restrained Bracing System to Rehabilitate Seismically Deficient Structures. Data, 7(12), 171. doi:10.3390/data7120171.
[76] Rafi, M. M., Lodi, S. H., Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2022). Experimental Investigation of Dynamic Behavior of RC Frame Strengthened with Buckling-Restrained Bracing. Journal of Structural Engineering, 148(7), 4022076. doi:10.1061/(asce)st.1943-541x.0003371.
[77] Rafi, M. M., Lodi, S. H., Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2021). Shake-table testing of deficient reinforced concrete frame retrofitted with buckling restrained brace. ACI Structural Journal, 118(3), 161–173. doi:10.14359/51729351.
[78] Al-Sadoon, Z. A., Saboor Karzad, A., Sagheer, A., & AlHamaydeh, M. (2022). Replaceable fuse buckling-restrained brace (BRB): Experimental cyclic qualification testing and NLFEA modeling. Structures, 39, 997–1015. doi:10.1016/j.istruc.2022.03.081.
[79] Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2020). New Buckling-Restrained Brace for Seismically Deficient Reinforced Concrete Frames. Journal of Structural Engineering, 146(6), 4020082. doi:10.1061/(asce)st.1943-541x.0002439.
[80] Bastami, M., & Ahmady Jazany, R. (2019). Development of centrically fused braced frame (CFBF) for seismic regions. Soil Dynamics and Earthquake Engineering, 127, 105856. doi:10.1016/j.soildyn.2019.105856.
[81] Yoo, J.-H., Roeder, C. W., & Lehman, D. E. (2008). Analytical Performance Simulation of Special Concentrically Braced Frames. Journal of Structural Engineering, 134(6), 881–889. doi:10.1061/(asce)0733-9445(2008)134:6(881).
[82] Boostani, M., Rezaifar, O., & Gholhaki, M. (2018). Introduction and seismic performance investigation of the proposed lateral bracing system called "OGrid.” Archives of Civil and Mechanical Engineering, 18(4), 1024–1041. doi:10.1016/j.acme.2018.02.003.
[83] Lee, H. M., Oh, H. S., Huh, C., Oh, S. Y., Yoon, H. M., & Moon, S. T. (2002). Ultimate Energy Absorption Capacity of Steel Plate Slit Dampers Subjected to Shear Force. Steel Structures, 12(2), 71–79.
[84] Benavent-Climent, A. (2010). A brace-type seismic damper based on yielding the walls of hollow structural sections. Engineering Structures, 32(4), 1113–1122. doi:10.1016/j.engstruct.2009.12.037.
[85] Ghabraie, K., Chan, R., Huang, X., & Xie, Y. M. (2010). Shape optimization of metallic yielding devices for passive mitigation of seismic energy. Engineering Structures, 32(8), 2258–2267. doi:10.1016/j.engstruct.2010.03.028.
[86] Aminzadeh, M., Kazemi, H. S., & Tavakkoli, S. M. (2020). A numerical study on optimum shape of steel slit dampers. Advances in Structural Engineering, 23(14), 2967–2981. doi:10.1177/1369433220927281.
[87] Tagawa, H., Yamanishi, T., Takaki, A., & Chan, R. W. K. (2016). Cyclic behavior of seesaw energy dissipation system with steel slit dampers. Journal of Constructional Steel Research, 117, 24–34. doi:10.1016/j.jcsr.2015.09.014.
[88] Katal Mohseni, P., Zahedi-khameneh, A., & Naeemifar, O. (2020). Study of the Effect of Geometric Parameters of Steel Block Slit Dampers on Energy Absorption. International Journal of Steel Structures, 20(3), 1069–1079. doi:10.1007/s13296-020-00343-3.
[89] Kim, J. (2019). Development of seismic retrofit devices for building structures. International Journal of High-Rise Buildings, 8(3), 221–227. doi:10.21022/IJHRB.2019.8.3.221.
[90] Guo, W., Ma, C., Yu, Y., Bu, D., & Zeng, C. (2020). Performance and optimum design of replaceable steel strips in an innovative metallic damper. Engineering Structures, 205, 110118. doi:10.1016/j.engstruct.2019.110118.
[91] Askariani, S. S., & Garivani, S. (2020). Introducing and numerical study of a new brace-type slit damper. Structures, 27, 702–717. doi:10.1016/j.istruc.2020.06.019.
[92] Zhao, B., Lu, B., Zeng, X., & Gu, Q. (2021). Experimental and numerical study of hysteretic performance of new brace type damper. Journal of Constructional Steel Research, 183, 106717. doi:10.1016/j.jcsr.2021.106717.
[93] Javidan, M. M., Nasab, M. S. E., & Kim, J. (2021). Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers. Steel and Composite Structures, 39(5), 645–664. doi:10.12989/scs.2021.39.5.645.
[94] Benavent-Climent, A., Escolano-Margarit, D., Arcos-Espada, J., & Ponce-Parra, H. (2021). New metallic damper with multiphase behavior for seismic protection of structures. Metals, 11(2), 1–30. doi:10.3390/met11020183.
[95] Almohammad-Albakkar, M., & Behnamfar, F. (2022). Numerical investigation of grooved gusset plate damper for using in cross-braced frames. Journal of Constructional Steel Research, 196, 107434. doi:10.1016/j.jcsr.2022.107434.
[96] Almohammad-albakkar, M., Behnamfar, F., & Ataei, A. (2024). Experimental and numerical study of grooved gusset plate damper for cross-braced frames. Journal of Constructional Steel Research, 216, 108611. doi:10.1016/j.jcsr.2024.108611.
[97] Almohammad-albakkar M. and Behnamfar F., (2023). Seismic Performance Assessment of Cross-Braced Steel Frame Equipped with New Damper, 13th International Congress on Civil Engineering, 9-11 May, 2023, Tehran, Iran.
[98] Heyrani Moghaddam, S., & Shooshtari, A. (2023). Numerical and experimental investigation on seismic performance of proposed steel slit dampers. Journal of Constructional Steel Research, 200, 107646. doi:10.1016/j.jcsr.2022.107646.
[99] Hui, C., Zhou, Z., Li, Y., Jiao, Y., & Hai, R. (2022). Quasi-static cyclic loading experiment and analysis of double-side slotted steel tube shear damper. Archives of Civil and Mechanical Engineering, 23(1), 45. doi:10.1007/s43452-022-00581-8.
[100] Kang, H., Adane, M., Chun, S., & Kim, J. (2022). Development of a seismic retrofit system made of steel frame with vertical slits Development of a seismic retrofit system made of steel frame with vertical slits. Steel and Composite Structures, 44(2), 269–280.
[101] Bae, J., Lee, C. H., Park, M., Alemayehu, R. W., Ryu, J., Kim, Y., & Ju, Y. K. (2020). Cyclic loading performance of radius-cut double coke-shaped strip dampers. Materials, 13(18), 3920. doi:10.3390/MA13183920.
[102] Zhou, X., Tan, Y., Ke, K., Yam, M. C. H., Zhang, H., & Xu, J. (2023). An experimental and numerical study of brace-type long double C-section steel slit dampers. Journal of Building Engineering, 64, 105555. doi:10.1016/j.jobe.2022.105555.
[103] He, L., Sun, X., Bu, H., & Tang, Z. (2022). Seismic Performance of MRSF Structures Damped with Steel Slit Shear Panels. International Journal of Structural Stability and Dynamics, 22(03n04), 2240013. doi:10.1142/s0219455422400132.
[104] Ahmadie Amiri, H., Pournamazian Najafabadi, E., Esmailpur Estekanchi, H., & Ozbakkaloglu, T. (2020). Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method. Engineering Structures, 224, 110955. doi:10.1016/j.engstruct.2020.110955.
[105] Oh, S. H., & Park, H. Y. (2022). Experimental study on seismic performance of steel slit damper under additional tensile load. Journal of Building Engineering, 50, 104110. doi:10.1016/j.jobe.2022.104110.
[106] Lee, K. S., Lee, B. G., & Jung, J. S. (2022). Seismic Strengthening of R/C Buildings Retrofitted by New Window"Type System Using Non"Buckling Slit Dampers Examined via Pseudo"Dynamic Testing and Nonlinear Dynamic Analysis. Applied Sciences, 12(3), 1220. doi:10.3390/app12031220.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.