Investigation of the Mechanical Behavior of Full-Scale Experimental Bugis-Makassar Timber House Structures
Downloads
Doi: 10.28991/CEJ-2024-010-06-04
Full Text: PDF
Downloads
[2] Indonesia-Investment. (2018). Natural Disasters in Indonesia. Indonesia-Investment, Bantul, Indonesia. Available online: https://www.indonesia-investments.com/business/risks/natural-disasters/item243 (accessed on March 2024).
[3] BIG. (2023). Indonesian Ballad InaTEWS and Disaster. Geospatial Information Agency, Jakarta, Indonesia. Available online: https://big.go.id/en/content/article/indonesian-ballad-inatews-and-disaster (accessed on January 2024).
[4] Reuters Graphics. (2018). Catastrophe in Sulawesi. Available online: https://fingfx.thomsonreuters.com/gfx/rngs/INDONESIA-QUAKE/010080KV15C/index.html (accessed on March 2024).
[5] Sudarman, S., & Attar, M. (2020). Study of Vernacular House Endurance in South Sulawesi To Earthquake as a Result of Quality Change in Structure Material. Vitruvian Journal of Building Architecture and Environment, 10(1), 61. doi:10.22441/vitruvian.2020.v10i1.008.
[6] PUPR. (2021). Review and Analysis of Indonesia Traditional House. Research Institute for Human Settlements (PUPR), Jakarta, Indonesia.
[7] Idham, N. C. (2021). Directing Housing Developments for Achieving Earthquake Disasters Safety in Indonesia. IOP Conference Series: Earth and Environmental Science, 933(1), 012035. do:10.1088/1755-1315/933/1/012035.
[8] Prihatini, Z. & Dewi, B.K. (2021). Why was the NTT earthquake felt in Makassar? This is an expert explanation. Jakarta, Indonesia. Available online: https://www.kompas.com/sains/read/2021/12/15/070500523/mengapa-gempa-ntt-terasa-hingga-makassar-ini-penjelasan-pakar?page=all#google_vignette (accessed on March 2024).
[9] Parung, H. (2012). Seismic Design of Building. UNM Publisher Makassar, Sulawesi Selatan, Indonesia.
[10] Sari, D. P., Sudirman, M., & Asmuliany, A. (2024). The Design of Earthquake Evacuation Spaces Based on Local Wisdom: A Case Study of Traditional Houses in South Sulawesi. Designs, 8(2), 30. doi:10.3390/designs8020030.
[11] Barreca, F., Arcuri, N., Cardinali, G. D., Fazio, S. Di, Rollo, A., & Tirella, V. (2022). A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing. Civil Engineering Journal (Iran), 8(10), 2336–2352. doi:10.28991/CEJ-2022-08-10-020.
[12] Doğan, M. (2010). Seismic analysis of traditional buildings: Bagdadi and Himis. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 11(1), 35-45.
[13] Doǧangün, A., Tuluk, Ö. I., Livaoǧlu, R., & Acar, R. (2006). Traditional wooden buildings and their damages during earthquakes in Turkey. Engineering Failure Analysis, 13(6), 981–996. doi:10.1016/j.engfailanal.2005.04.011.
[14] Erarslan, A. (2019). Timber construction systems in anatolian vernacular architecture. Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 12(2), 37–52. doi:10.31926/but.fwiafe.2019.12.61.2.3.
[15] Aktaş, Y. D. (2017). Seismic resistance of traditional timber-frame hımış structures in Turkey: a brief overview. International Wood Products Journal, 8, 21–28. doi:10.1080/20426445.2016.1273683.
[16] Güçhan, N. Šž. (2018). History and Characteristics of Construction Techniques Used in Traditional Timber Ottoman Houses. International Journal of Architectural Heritage, 12(1), 1–20. doi:10.1080/15583058.2017.1336811.
[17] Baǧbanci, M. B., & Baǧbanci, Ö. K. (2018). The Dynamic Properties of Historic Timber-Framed Masonry Structures in Bursa, Turkey. Shock and Vibration, 2018. doi:10.1155/2018/3257434.
[18] Chand, B., Kaushik, H. B., & Das, S. (2020). Material Characterization of Traditional Assam-Type Wooden Houses in Northeastern India. Journal of Materials in Civil Engineering, 32(12), 10 1061 1943–5533 0003492. doi:10.1061/(asce)mt.1943-5533.0003492.
[19] Chand, B., Kaushik, H. B., & Das, S. (2020). Lateral load behavior of connections in Assam-type wooden houses in the Himalayan region of India. Construction and Building Materials, 261. doi:10.1016/j.conbuildmat.2020.119904.
[20] Paudel, S., Shima, N., & Fujii, T. (2018). Development of earthquake resilient housing in Nepal by development of earthquake introducing Japanese. AIJ Journal of Technology and Design, 24(57), 751–755. doi:10.3130/aijt.24.751.
[21] Buchanan, A., & Moroder, D. (2017). Log house performance in the 2016 Kaikoura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2), 225–236. doi:10.5459/bnzsee.50.2.225-236.
[22] HORIE, T., & KANEKO, S. (2017). Arrangement and Terminology of the Main Structural Members of the Understructure in Japanese and British Vernacular Houses. Journal of Architecture and Planning (Transactions of AIJ), 82(740), 2553–2563. doi:10.3130/aija.82.2553.
[23] Kim, Y. M. (2020). Structural analysis and conceptual seismic design of large-span Korean traditional timber structure. Civil Engineering and Architecture, 8(2), 154–165. doi:10.13189/cea.2020.080213.
[24] Vasconcelos, G., Lourenço, P. B., & Poletti, E. (2015). An Overview on the Seismic Behaviour of Timber Frame Structures. Historical Earthquake-Resistant Timber Frames in the Mediterranean Area. Springer, Cham, Switzerland. doi:10.1007/978-3-319-16187-7_10.
[25] Crayssac, E., Song, X., Wu, Y., & Li, K. (2018). Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Engineering Structures, 161, 223–230. doi:10.1016/j.engstruct.2018.02.022.
[26] Dzhurko, D., Haacke, B., Haberbosch, A., Köhne, L., König, N., Lode, F., Marx, A., Mühlnickel, L., Neunzig, N., Niemann, A., Polewka, H., Schmidtke, L., Von der Groeben, P. L. M., Wagemann, K., Thoma, F., Bothe, C., & Churkina, G. (2024). Future buildings as carbon sinks: Comparative analysis of timber-based building typologies regarding their carbon emissions and storage. Frontiers in Built Environment, 1330105. doi:10.3389/fbuil.2024.1330105.
[27] Premrov, M., & нegarac Leskovar, V. (2023). Innovative Structural Systems for Timber Buildings: A Comprehensive Review of Contemporary Solutions. Buildings, 13(7), 13. doi:10.3390/buildings13071820.
[28] Meng, X., Yang, Q., Wei, J., & Li, T. (2018). Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests. Engineering Structures, 167, 582–591. doi:10.1016/j.engstruct.2018.04.077.
[29] Huang, H., Sun, Z., Guo, T., & Li, P. (2017). Experimental study on the seismic performance of traditional Chuan-Dou style wood frames in Southern China. Structural Engineering International, 27(2), 246–254. doi:10.2749/101686617X14881932435817.
[30] Meng, X., Li, T., & Yang, Q. (2019). Experimental study on the seismic mechanism of a full-scale traditional Chinese timber structure. Engineering Structures, 180, 484–493. doi:10.1016/j.engstruct.2018.11.055.
[31] Sha, B., Xie, L., Yong, X., & Li, A. (2021). Hysteretic behavior of an ancient Chinese multi-layer timber substructure: A full-scale experimental test and analytical model. Journal of Building Engineering, 43. doi:10.1016/j.jobe.2021.103163.
[32] Yu, P., Li, T., & Yang, Q. (2023). Inelastic Behavior of Mortise-Tenon Jointed Traditional Timber Frame with Free-Standing Columns. International Journal of Architectural Heritage. doi:10.1080/15583058.2023.2203669.
[33] Ren, Q., Liang, B., Zhou, Y., Liu, G., Yang, Y., & Lu, L. (2024). Experimental Study on Wooden Pin Reinforcement of the Typical Mortise-Tenon Joints of Ancient Timber Frames. International Journal of Architectural Heritage. doi:10.1080/15583058.2024.2320408.
[34] Li, S., Li, D., Chen, T., Milani, G., Shi, S., & Wang, S. (2023). Seismic performance of timber through-tenon joints with shrinkage flaw in tenon. Journal of Building Engineering, 65, 105702. doi:10.1016/j.jobe.2022.105702.
[35] Atika, F. A. (2018). Transformation of the Architectural Form of a Bugis Traditional House on Jalan Usman Sadar III/36, Gresik. Prosiding Seminar Nasional Sains Dan Teknologi Terapan, September, 2018. (In Indonesian).
[36] Al-Faaruuq, A. M., & AS, Z. (2020). Local Wisdom of the Bugis Baranti Traditional House in Sidrap Regency. Timpalaja: Architecture Student Journals, 2(1), 68–71. doi:10.24252/timpalaja.v2i1a8. (In Indonesian).
[37] Nawawi, N. (2020). Technology for Building a Bugis House According to Panrita Bola Ugi. Technoscience: Science and Technology Information Media, 14(1), 12943. doi:10.24252/teknosains.v14i1.12943. (In Indonesian).
[38] Puspitasari, S. D., Suprapto Siswosukarto, Harahap, S., & Pinta Astuti. (2022). Analysis of the Behavior and Resistance of Bugis Traditional Houses Against Earthquake Loads. Jurnal Teknik Sipil, 16(4), 280–288. doi:10.24002/jts.v16i4.5666.
[39] Aryadi, A., Kahar, M. A., & Mardiana, R. (2022). Analysis of Response and Performance of Bugis-Makassar Stilt House Structures Using Pushover Analysis. IOP Conference Series: Earth and Environmental Science, 1117(1), 012032. doi:10.1088/1755-1315/1117/1/012032.
[40] Basri, E., Saefudin, Rulliaty, S., & Yuniarti, K. (2009). Drying conditions for 11 potential ramin substitutes. Journal of Tropical Forest Science, 328-335.
[41] Burley, A. L., Enright, N. J., & Mayfield, M. M. (2011). Demographic response and life history of traditional forest resource tree species in a tropical mosaic landscape in Papua New Guinea. Forest Ecology and Management, 262(5), 750–758. doi:10.1016/j.foreco.2011.05.008.
[42] Aryadi, A., Parung, H., Irmawaty, R., & Amiruddin, A. A. (2023). Physical and Mechanical Properties of Bitti Wood in Bugis-Makassar Stilt House Structures. Prosiding Seminar Nasional Teknik Sipil UMS, May 2023.
[43] Armin Aryadi, A. A., Parung, H., Irmawaty, R., & Amiruddin, A. (2023). Structural Design and Construction of Bugis-Makassar Stilt Houses Using BIM (Building Information Modeling) Applications. Prosiding-Snekti, 3.
[44] ISO 16670:2003 (2003). Timber structures - Joints made with mechanical fasteners - Quasi-static reversed-cyclic test method. International Organization for Standardization (ISO), Geneva, Switzerland.
[45] ASCE/SEI 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414859
[46] Uang, C. M., & Bertero, V. V. (1988). Implications of recorded earthquake ground motions on seismic design of building structures. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, United States.
[47] Uang, C. M, & Bertero, V. V. (1990). Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1), 77–90. doi:10.1002/eqe.4290190108.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.