Optimizing Gene Expression Programming to Predict Shear Capacity in Corrugated Web Steel Beams
Downloads
Doi: 10.28991/CEJ-2024-010-05-02
Full Text: PDF
[2] Tetougueni, C. D., Maiorana, E., Zampieri, P., & Pellegrino, C. (2019). Plate girders behavior under in-plane loading: A review. Engineering Failure Analysis, 95, 332–358. doi:10.1016/j.engfailanal.2018.09.021.
[3] Leblouba, M., Karzad, A. S., Tabsh, S. W., & Barakat, S. (2022). Plated versus Corrugated Web Steel Girders in Shear: Behavior, Parametric Analysis, and Reliability-Based Design Optimization. Buildings, 12(12). doi:10.3390/buildings12122046.
[4] Hassanein, M. F., Zhang, Y. M., Elkawas, A. A., Al-Emrani, M., & Shao, Y. B. (2022). Small-scale laterally-unrestrained corrugated web girders: (II) Parametric studies and LTB design. Thin-Walled Structures, 180. doi:10.1016/j.tws.2022.109776.
[5] Papangelis, J., Trahair, N., & Hancock, G. (2017). Direct strength method for shear capacity of beams with corrugated webs. Journal of Constructional Steel Research, 137, 152–160. doi:10.1016/j.jcsr.2017.06.007.
[6] Giglioni, V., Venanzi, I., & Ubertini, F. (2023). Supervised machine learning techniques for predicting multiple damage classes in bridges. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2023. doi:10.1117/12.2664359.
[7] Barkhordari, M. S., & Jawdhari, A. (2023). Machine learning based prediction model for plastic hinge length calculation of reinforced concrete structural walls. Advances in Structural Engineering, 26(9), 1714–1734. doi:10.1177/13694332231174252.
[8] Markou, G., Bakas, N., & Megan van der Westhuizen, A. (2023). Use of AI and ML Algorithms in Developing Closed-Form Formulae for Structural Engineering Design. Artificial Intelligence and Machine Learning Techniques for Civil Engineering, 73–105. doi:10.4018/978-1-6684-5643-9.ch004.
[9] Noori Hoshyar, A., Rashidi, M., Yu, Y., & Samali, B. (2023). Proposed Machine Learning Techniques for Bridge Structural Health Monitoring: A Laboratory Study. Remote Sensing, 15(8), 1984. doi:10.3390/rs15081984.
[10] Gottardi, N., Freitag, S., & Meschke, G. (2023). Structural stress prediction based on deformations using artificial neural networks trained with artificial noise. PAMM, 22(1), e202200035. doi:10.1002/pamm.202200035.
[11] Alotaibi, E., Mostafa, O., Nassif, N., Omar, M., & Arab, M. G. (2021). Prediction of Punching Shear Capacity for Fiber-Reinforced Concrete Slabs Using Neuro-Nomographs Constructed by Machine Learning. Journal of Structural Engineering, 147(6), 04021075. doi:10.1061/(asce)st.1943-541x.0003041.
[12] Mostafa, O., Alotaibi, E., Al-Ateyat, A., Nassif, N., & Barakat, S. (2022). Prediction of Punching Shear Capacity for Fiber-Reinforced Polymer Concrete Slabs Using Machine Learning. 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates. doi:10.1109/aset53988.2022.9735107.
[13] Elamary, A. S., & Taha, I. B. M. (2021). Determining the shear capacity of steel beams with corrugated webs by using optimised regression learner techniques. Materials, 14(9), 2364. doi:10.3390/ma14092364.
[14] İpek, S., Degtyarev, V. V., Güneyisi, E. M., & Mansouri, I. (2022). GEP-based models for estimating the elastic shear buckling and ultimate loads of cold-formed steel channels with staggered slotted web perforations in shear. Structures, 46, 186–200. doi:10.1016/j.istruc.2022.10.060.
[15] Hossain, M. A. S., Uddin, M. N., & Hossain, M. M. (2023). Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP). Materials Today: Proceedings. doi:10.1016/j.matpr.2023.02.458.
[16] Alabduljabbar, H., Khan, M., Awan, H. H., Eldin, S. M., Alyousef, R., & Mohamed, A. M. (2023). Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e02074.
[17] Wang, T., Ma, J., & Wang, Y. (2021). Normalized shear strength of trapezoidal corrugated steel web dominated by local buckling. Engineering Structures, 233. doi:10.1016/j.engstruct.2021.111909.
[18] Johansson, B., Maquoi, R., Sedlacek, G., Müller, C., & Beg, D. (2007). Commentary and worked examples to EN 1993-1-5 Plated Structural Elements. JRC scientific and technical reports, European Commissions, Brussels, Belgium.
[19] Easley, J. T. (1975). Buckling Formulas for Corrugated Metal Shear Diaphragms. Journal of the Structural Division, 101(7), 1403–1417. doi:10.1061/jsdeag.0004095.
[20] Easley, J. T., & McFarland, D. E. (1969). Buckling of Light-Gage Corrugated Metal Shear Diaphragms. Journal of the Structural Division, 95(7), 1497–1516. doi:10.1061/jsdeag.0002313.
[21] Nikoomanesh, M. R., & Goudarzi, M. A. (2020). Experimental and numerical evaluation of shear load capacity for sinusoidal corrugated web girders. Thin-Walled Structures, 153. doi:10.1016/j.tws.2020.106798.
[22] Pasternak, H., & Branka, P. (1999). Load-bearing behavior of corrugated web girders under local load application. Bauingenieur 74, 5(5), 219–244.
[23] Elkawas, A. A., Hassanein, M. F., & El-Boghdadi, M. H. (2017). Numerical investigation on the nonlinear shear behavior of high-strength steel tapered corrugated web bridge girders. Engineering Structures, 134, 358–375. doi:10.1016/j.engstruct.2016.12.044.
[24] Hajdú, G., Pasternak, H., & Papp, F. (2023). Lateral-torsional buckling assessment of I-beams with sinusoidally corrugated web. Journal of Constructional Steel Research, 207, 107916. doi:10.1016/j.jcsr.2023.107916.
[25] Friedberg, R. M. (2010). A Learning Machine: Part I. IBM Journal of Research and Development, 2(1), 2–13. doi:10.1147/rd.21.0002.
[26] Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027. doi:10.48550/arXiv.cs/0102027.
[27] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, United States.
[28] Cramer, N. L. (2014). A representation for the adaptive generation of simple sequential programs. Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 240. doi:10.4324/9781315799674.
[29] Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection. Bradford, Denver, United States.
[30] Ferreira, C. (2006). Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin, Germany. doi:10.1007/3-540-32849-1.
[31] Faessler, E., Hahn, U., & Schauble, S. (2023). GePI: Large-scale text mining, customized retrieval and flexible filtering of gene/protein interactions. Nucleic Acids Research, 51(W1), W237–W242. doi:10.1093/nar/gkad445.
[32] Kontoni, D. P. N., Onyelowe, K. C., Ebid, A. M., Jahangir, H., Rezazadeh Eidgahee, D., Soleymani, A., & Ikpa, C. (2022). Gene Expression Programming (GEP) Modelling of Sustainable Building Materials including Mineral Admixtures for Novel Solutions. Mining, 2(4), 629–653. doi:10.3390/mining2040034.
[33] Anas, M., Khan, M., & Basit, H. (2021). A Comparative Study on the Performance of Gene Expression Programming and Machine Learning Methods. International Journal of Scientific Research in Science and Technology, 8(2), 140–147. doi:10.32628/ijsrset1218226.
[34] SIN Beam Technical Guide (2018). Corrugated Web Steel Beam: STEELCON Fabrication Inc. Ontario, Canada, 1-141
[35] Pasternak, H., & Kubieniec, G. (2011). Present state of art of plate girders with sinusoidally corrugated web. In Proceedings of the 10th International Conference on Steel Space and Composite Structures, 1-15.
[36] Ššledziewski, K., & Górecki, M. (2020). Finite element analysis of the stability of a sinusoidal web in steel and composite steel-concrete girders. Materials, 13(5), 1041. doi:10.3390/ma13051041.
[37] Górecki, M., & Ššledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of I-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.
[38] Hannebauer, D. (2007). On the cross-sectional and bar load-bearing capacity of beams with profiled webs. Ph.D. Thesis, BTU Cottbus-Senftenberg, Cottbus, Germany. (In German).
[39] Basiński, W. (2018). Shear Buckling of Plate Girders with Corrugated Web Restrained by End Stiffeners. Periodica Polytechnica Civil Engineering, 1-15. doi:10.3311/ppci.11554.
[40] Yan-Lin, G., Qing-Lin, Z., Siokola, W., & Andreas, H. (2008). Flange buckling behavior of the H-shaped member with sinusoidal webs. Fifth International Conference on Thin-Walled Structures, 18-20 June, 2008, Gold Coast, Australia.
[41] Nikoomanesh, M. R., & Goudarzi, M. A. (2021). Patch loading capacity for sinusoidal corrugated web girders. Thin-Walled Structures, 169, 108445. doi:10.1016/j.tws.2021.108445.
[42] Abdullah, M. D., & Almayah, A. A. (2023). The Effect of Shear Span on the Behavior of Triangularly Corrugated Web Steel Girders. Civil Engineering Journal (Iran), 9(2), 372–380. doi:10.28991/CEJ-2023-09-02-09.
[43] Wang, P. Y., Garlock, M. E. M., Zoli, T. P., & Quiel, S. E. (2021). Low-frequency sinusoids for enhanced shear buckling performance of thin plates. Journal of Constructional Steel Research, 177. doi:10.1016/j.jcsr.2020.106475.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
