Application of Soft Computing to Address Uncertainty in Construction Project Management: A Systematic Literature Review
Downloads
Doi: 10.28991/CEJ-2024-010-06-020
Full Text: PDF
[2] Zhong, S., Elhegazy, H., & Elzarka, H. (2022). Key factors affecting the decision-making process for buildings projects in Egypt. Ain Shams Engineering Journal, 13(3), 101597. doi:10.1016/j.asej.2021.09.024.
[3] Oppong, G. D., Chan, A. P. C., Ameyaw, E. E., Frimpong, S., & Dansoh, A. (2021). Fuzzy Evaluation of the Factors Contributing to the Success of External Stakeholder Management in Construction. Journal of Construction Engineering and Management, 147(11). doi:10.1061/(asce)co.1943-7862.0002155.
[4] Talatahari, S., Singh, V. P., Alavi, A. H., & Kang, F. (2015). Soft computing methods in civil engineering. Science World Journal, 2015(2), 605871. doi:10.1155/2015/605871.
[5] Smith, C. J., & Wong, A. T. C. (2022). Advancements in Artificial Intelligence-Based Decision Support Systems for Improving Construction Project Sustainability: A Systematic Literature Review. Informatics, 9(2), 43. doi:10.3390/informatics9020043.
[6] Xiaolong, H., Huiqi, Z., Lunchao, Z., Nazir, S., Jun, D., & Khan, A. S. (2021). Soft Computing and Decision Support System for Software Process Improvement: A Systematic Literature Review. Scientific Programming, 1–14. doi:10.1155/2021/7295627.
[7] Yenduri, G., & Gadekallu, T. R. (2022). A systematic literature review of soft computing techniques for software maintainability prediction: State-of-the-art, challenges and future directions. arXiv preprint arXiv:2209.10131. doi:10.48550/arXiv.2209.
[8] Rekik, R., Kallel, I., Casillas, J., & Alimi, A.M. (2018). Assessing web sites quality: A systematic literature review by text and association rules mining. International Journal of Information Management, 38(1), 201–216. doi:10.1016/j.ijinfomgt.2017.06.007.
[9] Tavana, M., & Sorooshian, S. (2024). A systematic review of the soft computing methods shaping the future of the metaverse. Applied Soft Computing, 150, 111098. doi:10.1016/j.asoc.2023.111098.
[10] Ibrahim, D. (2016). An Overview of Soft Computing. Procedia Computer Science, 102, 34–38. doi:10.1016/j.procs.2016.09.366.
[11] Sujatha, A., Govindaraju, L., Shivakumar, N., & Devaraj, V. (2021). Fuzzy knowledge-based system for suitability of soils in airfield applications. Civil Engineering Journal (Iran), 7(1), 140–152. doi:10.28991/cej-2021-03091643.
[12] Kuchta, D., & Zabor, A. (2022). Fuzzy modelling and control of project cash flows. Journal of Intelligent & Fuzzy Systems, 42(1), 155–168. doi:10.3233/JIFS-219183.
[13] Chen, L., & Pan, W. (2021). Review fuzzy multi-criteria decision-making in construction management using a network approach. Applied Soft Computing, 102. doi:10.1016/j.asoc.2021.107103.
[14] Lin, S. S., Shen, S. L., Zhou, A., & Xu, Y. S. (2021). Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods. Automation in Construction, 122, 103490. doi:10.1016/j.autcon.2020.103490.
[15] Marzouk, M., Elhakeem, A., & Adel, K. (2024). Artificial neural networks applications in construction and building engineering (1991–2021): Science mapping and visualization. Applied Soft Computing, 152. doi:10.1016/j.asoc.2023.111174.
[16] Alzwainy, F. M. S., Al-Suhaily, R. H., & Saco, Z. M. (2015). Project management and artificial neural networks: Fundamental and application. LAP LAMBERT Academic Publishing, Saarbrücken, Germany.
[17] Liu, Y., Huang, L., Liu, X., Ji, G., Cheng, X., & Onstein, E. (2023). A late-mover genetic algorithm for resource-constrained project-scheduling problems. Information Sciences, 642. doi:10.1016/j.ins.2023.119164.
[18] Bakshi, T., Sarkar, B., & Sanyal, S. K. (2012). An Evolutionary Algorithm for Multi-criteria Resource Constrained Project Scheduling Problem based on PSO. Procedia Technology, 6, 231–238. doi:10.1016/j.protcy.2012.10.028.
[19] Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings, 13(5), 1312. doi:10.3390/buildings13051312.
[20] Lin, P., Wu, M., & Zhang, L. (2023). Probabilistic safety risk assessment in large-diameter tunnel construction using an interactive and explainable tree-based pipeline optimization method. Applied Soft Computing, 143. doi:10.1016/j.asoc.2023.110376.
[21] Abdulfattah, B. S., Abdelsalam, H. A., Abdelsalam, M., Bolpagni, M., Thurairajah, N., Perez, L. F., & Butt, T. E. (2023). Predicting implications of design changes in BIM-based construction projects through machine learning. Automation in Construction, 155. doi:10.1016/j.autcon.2023.105057.
[22] Dikmen, S. U., Ates, O., Akbiyikli, R., & Sonmez, M. (2009). A review of utilization of soft computing methods in construction management. In Managing it in Construction/Managing Construction for Tomorrow. Managing Construction for Tomorrow International Conference. doi:10.1201/9781482266665-99.
[23] Nguyen, P. H. D., & Robinson Fayek, A. (2022). Applications of fuzzy hybrid techniques in construction engineering and management research. Automation in Construction, 134. doi:10.1016/j.autcon.2021.104064.
[24] Tiruneh, G. G., Fayek, A. R., & Sumati, V. (2020). Neuro-fuzzy systems in construction engineering and management research. Automation in Construction, 119. doi:10.1016/j.autcon.2020.103348.
[25] Tjiharjadi, S., Razali, S., & Sulaiman, H. A. (2022). A Systematic Literature Review of Multi-agent Pathfinding for Maze Research. Journal of Advances in Information Technology, 13(4), 358–367. doi:10.12720/jait.13.4.358-367.
[26] Williams, R. I., Clark, L. A., Clark, W. R., & Raffo, D. M. (2021). Re-examining systematic literature review in management research: Additional benefits and execution protocols. European Management Journal, 39(4), 521–533. doi:10.1016/j.emj.2020.09.007.
[27] Durach, C. F., Kembro, J., & Wieland, A. (2017). A New Paradigm for Systematic Literature Reviews in Supply Chain Management. Journal of Supply Chain Management, 53(4), 67–85. doi:10.1111/jscm.12145.
[28] Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. doi:10.3846/jcem.2021.15260.
[29] Cai, J., Li, Z., Dou, Y., Teng, Y., & Yuan, M. (2023). Contractor selection for green buildings based on the fuzzy Kano model and TOPSIS: a developer satisfaction perspective. Engineering, Construction and Architectural Management, 30(10), 5073–5108. doi:10.1108/ECAM-01-2022-0054.
[30] Vardin, A. N., Ansari, R., Khalilzadeh, M., Antucheviciene, J., & Bausys, R. (2021). An integrated decision support model based on BWM and Fuzzy-VIKOR techniques for contractor selection in construction projects. Sustainability (Switzerland), 13(12), 6933. doi:10.3390/su13126933.
[31] LeЛniak, A., Kubek, D., Plebankiewicz, E., Zima, K., & Belniak, S. (2018). Fuzzy AHP application for supporting contractors' bidding decision. Symmetry, 10(11), 642. doi:10.3390/sym10110642.
[32] Ujong, J. A., Mbadike, E. M., & Alaneme, G. U. (2022). Prediction of cost and duration of building construction using artificial neural network. Asian Journal of Civil Engineering, 23(7), 1117–1139. doi:10.1007/s42107-022-00474-4.
[33] Omar, M. F., Nursal, A. T., & Nawi, M. N. M. (2018). Vendor selection in Industrialised Building System (IBS) with topsis under fuzzy environment. Malaysian Construction Research Journal, 3, 163–177.
[34] Keles, A. E., Haznedar, B., Kaya Keles, M., & Arslan, M. T. (2023). The Effect of Adaptive Neuro-fuzzy Inference System (ANFIS) on Determining the Leadership Perceptions of Construction Employees. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(6), 4145–4157. doi:10.1007/s40996-023-01146-2.
[35] Kaya Keles, M., Kilic, U., & Keles, A. E. (2021). Proposed Artificial Bee Colony Algorithm as Feature Selector to Predict the Leadership Perception of Site Managers. Computer Journal, 64(3), 408–417. doi:10.1093/comjnl/bxaa163.
[36] Zhao, N., Ying, F. J., & Tookey, J. (2022). Knowledge visualisation for construction procurement decision-making: a process innovation. Management Decision, 60(4), 1039–1055. doi:10.1108/MD-01-2021-0051.
[37] Su, L., & Li, H. (2021). Project procurement method decision-making with spearman rank correlation coefficient under uncertainty circumstances. International Journal of Decision Support System Technology, 13(2), 16–44. doi:10.4018/IJDSST.2021040102.
[38] Khouja, A., Lehoux, N., & Cimon, Y. (2023). A fuzzy-based competitiveness assessment tool for construction SMEs. Benchmarking, 30(3), 868–898. doi:10.1108/BIJ-08-2021-0483.
[39] Almohsen, A. S., Alsanabani, N. M., Alsugair, A. M., & Al-Gahtani, K. S. (2023). Integrated artificial and deep neural networks with time series to predict the ratio of the low bid to owner estimate. Engineering, Construction and Architectural Management, 31(13), 79–101. doi:10.1108/ECAM-05-2023-0454.
[40] Zhang, L., Yao, H., Fu, Y., & Chen, Y. (2023). Comparing Subjective and Objective Measurements of Contract Complexity in Influencing Construction Project Performance: Survey versus Machine Learning. Journal of Management in Engineering, 39(4), 04023017. doi:10.1061/jmenea.meeng-5331.
[41] Nguyen, P. T. (2021). Application Machine Learning in Construction Management. TEM Journal, 10(3), 1385–1389. doi:10.18421/TEM103-48.
[42] Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2), 04019055. doi:10.1061/(asce)cp.1943-5487.0000874.
[43] Asadujjaman, M., Rahman, H. F., Chakrabortty, R. K., & Ryan, M. J. (2022). Multi-operator immune genetic algorithm for project scheduling with discounted cash flows. Expert Systems with Applications, 195. doi:10.1016/j.eswa.2022.116589.
[44] Milat, M., Knezić, S., & Sedlar, J. (2022). Application of a Genetic Algorithm for Proactive Resilient Scheduling in Construction Projects. Designs, 6(1), 16. doi:10.3390/designs6010016.
[45] Yin, J., Li, J., Yang, A., & Cai, S. (2024). Optimization of service scheduling problem for overlapping tower cranes with cooperative coevolutionary genetic algorithm. Engineering, Construction and Architectural Management, 31(3), 1348–1369. doi:10.1108/ECAM-08-2022-0767.
[46] Shehadeh, A., Alshboul, O., Tatari, O., Alzubaidi, M. A., & Hamed El-Sayed Salama, A. (2022). Selection of heavy machinery for earthwork activities: A multi-objective optimization approach using a genetic algorithm. Alexandria Engineering Journal, 61(10), 7555–7569. doi:10.1016/j.aej.2022.01.010.
[47] Golkhoo, F., & Moselhi, O. (2019). Optimized material management in construction using multi-layer perceptron. Canadian Journal of Civil Engineering, 46(10), 909–923. doi:10.1139/cjce-2018-0149.
[48] Kaveh, A., & Rajabi, F. (2022). Fuzzy-multi-mode Resource-constrained Discrete Time-cost-resource Optimization in Project Scheduling Using ENSCBO. Periodica Polytechnica Civil Engineering, 66(1), 50–62. doi:10.3311/PPci.19145.
[49] Chandanshive, V. B., & Kambekar, A. R. (2019). Estimation of Building Construction Cost Using Artificial Neural Networks. Journal of Soft Computing in Civil Engineering, 3(1), 91–107. doi:10.22115/SCCE.2019.173862.1098.
[50] Obianyo, J. I., Okey, O. E., & Alaneme, G. U. (2022). Assessment of cost overrun factors in construction projects in Nigeria using fuzzy logic. Innovative Infrastructure Solutions, 7(5), 304. doi:10.1007/s41062-022-00908-7.
[51] Deepa, G., Niranjana, A. J., & Balu, A. S. (2023). A hybrid machine learning approach for early cost estimation of pile foundations. Journal of Engineering, Design and Technology, 97. doi:10.1108/JEDT-03-2023-0097.
[52] Arabiat, A., Al-Bdour, H., & Bisharah, M. (2023). Predicting the construction projects time and cost overruns using K-nearest neighbor and artificial neural network: a case study from Jordan. Asian Journal of Civil Engineering, 24(7), 2405–2414. doi:10.1007/s42107-023-00649-7.
[53] Luo, L., Wu, X., Hong, J., & Wu, G. (2022). Fuzzy Cognitive Map-Enabled Approach for Investigating the Relationship between Influencing Factors and Prefabricated Building Cost Considering Dynamic Interactions. Journal of Construction Engineering and Management, 148(9), 04022081. doi:10.1061/(asce)co.1943-7862.0002336.
[54] Elkalla, I., Elbeltagi, E., & El Shikh, M. (2021). Solving Fuzzy Time–Cost Trade-Off in Construction Projects Using Linear Programming. Journal of The Institution of Engineers (India): Series A, 102(1), 267–278. doi:10.1007/s40030-020-00489-7.
[55] Gong, W., Xu, Z. S., Zhou, L., & Khder, M. A. (2022). Demonstration of application program of logistics public information management platform based on fuzzy constrained programming mathematical model. Applied Mathematics and Nonlinear Sciences, 8(1), 799–810. doi:10.2478/amns.2022.2.0067.
[56] Moballeghi, E., Pourrostam, T., Abbasianjahromi, H., & Makvandi, P. (2023). Assessing the Effect of Building Information Modeling System (BIM) Capabilities on Lean Construction Performance in Construction Projects Using Hybrid Fuzzy Multi-criteria Decision-Making Methods. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 47(3), 1871–1891. doi:10.1007/s40996-022-00971-1.
[57] Xia, J., Peng, R., Li, Z., Li, J., He, Y., & Li, G. (2023). Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network. Sensors, 23(19), 8169. doi:10.3390/s23198169.
[58] Challa, R. K., & Rao, K. S. (2022). An Effective Optimization of Time and Cost Estimation for Prefabrication Construction Management Using Artificial Neural Networks. Revue d'Intelligence Artificielle, 36(1), 115–123. doi:10.18280/ria.360113.
[59] Wang, H., & Hu, Y. (2022). Artificial Intelligence Technology Based on Deep Learning in Building Construction Management System Modeling. Advances in Multimedia, 2022, 1–9. doi:10.1155/2022/5602842.
[60] Pour Rahimian, F., Seyedzadeh, S., Oliver, S., Rodriguez, S., & Dawood, N. (2020). On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Automation in Construction, 110. doi:10.1016/j.autcon.2019.103012.
[61] Davila Delgado, J. M., & Oyedele, L. (2021). Deep learning with small datasets: using autoencoders to address limited datasets in construction management. Applied Soft Computing, 112. doi:10.1016/j.asoc.2021.107836.
[62] Uncuoglu, E., Citakoglu, H., Latifoglu, L., Bayram, S., Laman, M., Ilkentapar, M., & Oner, A. A. (2022). Comparison of neural network, Gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 Trees methods for solving civil engineering problems. Applied Soft Computing, 129. doi:10.1016/j.asoc.2022.109623.
[63] Ronghui, S., & Liangrong, N. (2022). An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers, 38(S4), 2663–2680. doi:10.1007/s00366-021-01420-9.
[64] Kanyilmaz, A., Tichell, P. R. N., & Loiacono, D. (2022). A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization. Engineering Applications of Artificial Intelligence, 112. doi:10.1016/j.engappai.2022.104711.
[65] He, W., & Shi, Y. (2019). Multiobjective Construction Optimization Model Based on Quantum Genetic Algorithm. Advances in Civil Engineering, 2019, 1–8. doi:10.1155/2019/5153082.
[66] Chassiakos, A. P., & Rempis, G. (2019). Evolutionary Algorithm Performance Evaluation in Project Time-Cost Optimization. Journal of Soft Computing in Civil Engineering, 3(2), 16–29. doi:10.22115/SCCE.2019.155434.1091.
[67] Maghsoodi, A. I., & Khalilzadeh, M. (2018). Identification and Evaluation of Construction Projects' Critical Success Factors Employing Fuzzy-TOPSIS Approach. KSCE Journal of Civil Engineering, 22(5), 1593–1605. doi:10.1007/s12205-017-1970-2.
[68] Nguyen, P. T., Huynh, V. D. B., & Nguyen, Q. L. H. T. T. (2021). Evaluation Factors Influencing Construction Price Index in Fuzzy Uncertainty Environment. Journal of Asian Finance, Economics and Business, 8(2), 195–200. doi:10.13106/jafeb.2021.vol8.no2.0195.
[69] Liu, C., M.E. Sepasgozar, S., Shirowzhan, S., & Mohammadi, G. (2022). Applications of object detection in modular construction based on a comparative evaluation of deep learning algorithms. Construction Innovation, 22(1), 141–159. doi:10.1108/CI-02-2020-0017.
[70] Fan, C. L. (2022). Data mining model for predicting the quality level and classification of construction projects. Journal of Intelligent & Fuzzy Systems, 42(1), 139–153. doi:10.3233/JIFS-219182.
[71] Zhang, Z., Wang, B., Wang, X., He, Y., Wang, H., & Zhao, S. (2022). Safety-Risk Assessment for TBM Construction of Hydraulic Tunnel Based on Fuzzy Evidence Reasoning. Processes, 10(12), 2597. doi:10.3390/pr10122597.
[72] Li, Q., Guo, Y., Wang, B., Chen, Y., Xie, J., & Wen, C. (2023). Research on Risk Evaluation of Hydropower Engineering EPC Project Based on Improved Fuzzy Evidence Reasoning Model. Systems, 11(7), 327. doi:10.3390/systems11070327.
[73] Balta, S., Birgonul, M. T., & Dikmen, I. (2018). Buffer Sizing Model Incorporating Fuzzy Risk Assessment: Case Study on Concrete Gravity Dam and Hydroelectric Power Plant Projects. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(1), 948. doi:10.1061/ajrua6.0000948.
[74] Ammar, M. A., & Abd-ElKhalek, S. I. (2022). Criticality measurement in fuzzy project scheduling. International Journal of Construction Management, 22(2), 252–261. doi:10.1080/15623599.2019.1619226.
[75] Patel, T. D., Haupt, T. C., & Bhatt, T. (2019). Fuzzy probabilistic approach for risk assessment of BOT toll roads in Indian context. Journal of Engineering, Design and Technology, 18(1), 251–269. doi:10.1108/jedt-05-2019-0138.
[76] Wang, Y., Su, J., Zhang, S., Guo, S., Zhang, P., & Du, M. (2020). A Dynamic Risk Assessment Method for Deep-Buried Tunnels Based on a Bayesian Network. Geofluids, 2020, 1–14. doi:10.1155/2020/8848860.
[77] Zhang, S., & Wang, X. (2023). Quantifying Schedule Delay Risk in Construction Projects: A Data-Driven Approach with BIM and Probabilistic Reliability Analysis. Advances in Civil Engineering, 2023, 1–21. doi:10.1155/2023/5525655.
[78] Ou, X., Wu, Y., Wu, B., Jiang, J., & Qiu, W. (2022). Dynamic Bayesian Network for Predicting Tunnel-Collapse Risk in the Case of Incomplete Data. Journal of Performance of Constructed Facilities, 36(4), 04022034. doi:10.1061/(asce)cf.1943-5509.0001745.
[79] Meng, G., Liu, J., Qiu, W., Wu, B., & Xu, S. (2022). A Failure Probability Evaluation Method for the Collapse of Drill-Blast Tunnels Based on a Multistate Cloud Bayesian Network. Frontiers in Earth Science, 10. doi:10.3389/feart.2022.856701.
[80] Lin, C. L., Fan, C. L., & Chen, B. K. (2022). Hybrid Analytic Hierarchy Process–Artificial Neural Network Model for Predicting the Major Risks and Quality of Taiwanese Construction Projects. Applied Sciences (Switzerland), 12(15), 7790. doi:10.3390/app12157790.
[81] Shirazi, D. H., & Toosi, H. (2023). Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks. Journal of Construction Engineering and Management, 149(4), 04023011. doi:10.1061/jcemd4.coeng-12367.
[82] Zaouga, W., & Rabai, L. B. A. (2021). A Decision Support System for Project Risk Management based on Ontology Learning. International Journal of Computer Information Systems and Industrial Management Applications, 13, 113–123.
[83] Jiang, X., Wang, S., Wang, J., Lyu, S., & Skitmore, M. (2020). A decision method for construction safety risk management based on ontology and improved cbr: Example of a subway project. International Journal of Environmental Research and Public Health, 17(11), 3928. doi:10.3390/ijerph17113928.
[84] Fan, C.-L. (2020). Defect Risk Assessment Using a Hybrid Machine Learning Method. Journal of Construction Engineering and Management, 146(9), 04020102. doi:10.1061/(asce)co.1943-7862.0001897.
[85] Liu, X., Xu, F., Zhang, Z., & Sun, K. (2023). Fall-portent detection for construction sites based on computer vision and machine learning. Engineering, Construction and Architectural Management, 458. doi:10.1108/ECAM-05-2023-0458.
[86] Alaneme, G. U., Dimonyeka, M. U., Ezeokpube, G. C., Uzoma, I. I., & Udousoro, I. M. (2021). Failure assessment of dysfunctional flexible pavement drainage facility using fuzzy analytical hierarchical process. Innovative Infrastructure Solutions, 6(2), 1-18. doi:10.1007/s41062-021-00487-z.
[87] Meye, S. M., Li, G., Shen, Z., & Zhang, J. (2022). Fuzzy Multi-Mode Time–Cost–Quality Trade-Off Optimization in Construction Management of Hydraulic Structure Projects. Applied Sciences (Switzerland), 12(12), 6270. doi:10.3390/app12126270.
[88] Cheng, M. Y., & Hoang, N. D. (2018). Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Computing and Applications, 30(8), 2489–2497. doi:10.1007/s00521-017-2840-z.
[89] Golabchi, H., & Hammad, A. (2024). Estimating labor resource requirements in construction projects using machine learning. Construction Innovation, 24(4), 1048–1065. doi:10.1108/CI-11-2021-0211.
[90] Ellis, F. Y. A., Amos-Abanyie, S., Kwofie, T. E., Afram, S. O., & Aigbavboa, C. O. (2023). Critical behavioural index for improving collaborative working in projects teams using fuzzy synthetic evaluation. International Journal of Project Organization and Management, 15(2), 184–217. doi:10.1504/IJPOM.2023.131675.
[91] Shoar, S., & Banaitis, A. (2018). Application of fuzzy fault tree analysis to identify factors influencing construction labor productivity: A high-rise building case study. Journal of Civil Engineering and Management, 25(1), 41–52. doi:10.3846/jcem.2019.7785.
[92] Watfa, M., Bykovski, A., & Jafar, K. (2022). Testing automation adoption influencers in construction using light deep learning. Automation in Construction, 141. doi:10.1016/j.autcon.2022.104448.
[93] Xu, R., Kim, B. W., Moe, S. J. S., Khan, A. N., Kim, K., & Kim, D. H. (2023). Predictive worker safety assessment through on-site correspondence using multi-layer fuzzy logic in outdoor construction environments. Heliyon, 9(9), 19408. doi:10.1016/j.heliyon.2023.e19408.
[94] Alkaissy, M., Arashpour, M., Golafshani, E. M., Hosseini, M. R., Khanmohammadi, S., Bai, Y., & Feng, H. (2023). Enhancing construction safety: Machine learning-based classification of injury types. Safety Science, 162. doi:10.1016/j.ssci.2023.106102.
[95] Li, L., Yu, J., Cheng, H., & Peng, M. (2021). A smart helmet-based PLS-BPNN error compensation model for infrared body temperature measurement of construction workers during COVID-19. Mathematics, 9(21), 2808. doi:10.3390/math9212808.
[96] Zhao, C. (2022). Construction of Safety Early Warning Model for Construction of Engineering Based on Convolution Neural Network. Computational Intelligence and Neuroscience, 2022, 1–7. doi:10.1155/2022/8937084.
[97] Khanh, H. D., Kim, S. Y., & Linh, L. Q. (2023). Construction productivity prediction through Bayesian networks for building projects: case from Vietnam. Engineering, Construction and Architectural Management, 30(5), 2075–2100. doi:10.1108/ECAM-07-2021-0602.
[98] Lin, C. L., & Fan, C. L. (2018). Examining association between construction inspection grades and critical defects using data mining and fuzzy logic. Journal of Civil Engineering and Management, 24(4), 301–317. doi:10.3846/jcem.2018.3072.
[99] Li, X. K., Wang, X. M., & Lei, L. (2020). The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance. Engineering, Construction and Architectural Management, 27(2), 356–384. doi:10.1108/ECAM-01-2019-0020.
[100] Naji, K. K., Gunduz, M., & Naser, A. F. (2022). An Adaptive Neurofuzzy Inference System for the Assessment of Change Order Management Performance in Construction. Journal of Management in Engineering, 38(2), 04021098. doi:10.1061/(asce)me.1943-5479.0001017.
[101] Faraji, A. (2021). Neuro-fuzzy system based model for prediction of project performance in downstream sector of petroleum industry in Iran. Journal of Engineering, Design and Technology, 19(6), 1268–1290. doi:10.1108/JEDT-06-2020-0241.
[102] Nasirzadeh, F., Kabir, H. M. D., Akbari, M., Khosravi, A., Nahavandi, S., & Carmichael, D. G. (2020). ANN-based prediction intervals to forecast labour productivity. Engineering, Construction and Architectural Management, 27(9), 2335–2351. doi:10.1108/ECAM-08-2019-0406.
[103] Oliveira, B. A. S., Neto, A. P. de F., Fernandino, R. M. A., Carvalho, R. F., Bo, T., & Guimarí£es, F. G. (2024). Automated construction management platform with image analysis using deep learning neural networks. Multimedia Tools and Applications, 83(10), 28927–28945. doi:10.1007/s11042-023-16623-z.
[104] Lung, L. W., & Wang, Y. R. (2023). Applying Deep Learning and Single Shot Detection in Construction Site Image Recognition. Buildings, 13(4), 1074. doi:10.3390/buildings13041074.
[105] Oliveira, B. A. S., De Faria Neto, A. P., Fernandino, R. M. A., Carvalho, R. F., Fernandes, A. L., & Guimaraes, F. G. (2021). Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 9, 19195–19207. doi:10.1109/ACCESS.2021.3054468.
[106] Fan, C. L. (2022). Evaluation of Classification for Project Features with Machine Learning Algorithms. Symmetry, 14(2), 372. doi:10.3390/sym14020372.
[107] Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Alsolami, E., Samad, S., Mahmoud, M., Alarood, A. A., Zainol, A., Majeed, H. D., & Shuib, L. (2020). Assessment of sustainability indicators for green building manufacturing using fuzzy multi-criteria decision making approach. Journal of Cleaner Production, 277. doi:10.1016/j.jclepro.2020.122905.
[108] Fazeli, A., Jalaei, F., Khanzadi, M., & Banihashemi, S. (2019). BIM-integrated TOPSIS-Fuzzy framework to optimize selection of sustainable building components. International Journal of Construction Management, 22(7), 1240–1259. doi:10.1080/15623599.2019.1686836.
[109] Fallahpour, A., Wong, K. Y., Rajoo, S., Olugu, E. U., Nilashi, M., & Turskis, Z. (2020). A fuzzy decision support system for sustainable construction project selection: an integrated FPP-FIS model. Journal of Civil Engineering and Management, 26(3), 247–258. doi:10.3846/jcem.2020.12183.
[110] Albasri, H. W., & Naimi, S. (2023). Development of a hybrid artificial neural network method for evaluation of the sustainable construction projects. Acta Logistica, 10(3), 345–352. doi:10.22306/AL.V10I3.378.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.