Experimental and Numerical Research on the Behavior of Steel Columns with Circular Hollow Cross Sections

Florim Grajçevci, Armend Mujaj, Driton Kryeziu, Guxim Rrudhani, Neritan Shkodrani


A circular, hollow tubular steel column is introduced for experimental and analytical analysis in this study. A series of axial compression tests for the variation of static schemes are reported in this study. All theoretical, numerical, and experimental analyses are based on the European Standards for the steel structure, respectively EN 1993-1-1. The experimental models of steel columns are conducted on actual steel columns with a length of 3000 mm and a circular hollow section of 114.3/2.8 mm. To assess the behavior and stress values of the columns, various schematically supported systems are modeled, starting from the axial-centered columns to the symmetrical eccentric load and asymmetrical loaded columns. 3D modeling of the steel columns using the finite element program SEISMOSOFT is also developed for such elements. The accuracy of the model is compared with the experimental results using numerical analysis by the finite element method. Finally, the numerical comparison of the results provides a recommendation for the engineers regarding the design and construction of such columns.


Doi: 10.28991/CEJ-2024-010-05-014

Full Text: PDF


Steel Columns; European Standards; Circular Hollow Section; Action on Columns.


Ali, M. M., & Moon, K. S. (2018). Advances in structural systems for tall buildings: Emerging developments for contemporary urban giants. Buildings, 8(8), 104. doi:10.3390/buildings8080104.

EN 1993-1-1. (2005). Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels, Belgium.

EN 1990. (2002). Eurocode-Basis of structural design. European Committee for Standardization, Brussels, Belgium.

Grajçevci, F., Mujaj, A., Kryeziu, D., & Shehu, E. (2024). Experimental and Numerical Analysis of Concrete Columns under Axial Load Based on European Design Norms. Civil Engineering Journal, 10(2), 419–430. doi:10.28991/CEJ-2024-010-02-05.

Baláž, I., Koleková, Y., Agüero, A., & Balážová, P. (2023). Consistency of Imperfections in Steel Eurocodes. Applied Sciences (Switzerland), 13(1), 554. doi:10.3390/app13010554.

Zhao, O., Gardner, L., & Young, B. (2016). Structural performance of stainless steel circular hollow sections under combined axial load and bending - Part 1: Experiments and numerical modelling. Thin-Walled Structures, 101, 231–239. doi:10.1016/j.tws.2015.12.003.

Zhao, O., Gardner, L., & Young, B. (2016). Structural performance of stainless steel circular hollow sections under combined axial load and bending - Part 2: Parametric studies and design. Thin-Walled Structures, 101, 240–248. doi:10.1016/j.tws.2015.12.005.

Cui, Y., Zhang, J., Ma, C., Niu, M., Jiang, K., Li, S., & Su, A. (2024). Testing, numerical modelling and design of G550 high strength cold-formed steel built-up section columns. Thin-Walled Structures, 196, 111529. doi:10.1016/j.tws.2023.111529.

Burgos, R. B., & Silva, L. E. (2023). Evaluation of the P-Δ (P-Delta) effect in columns and frames using the two-cycle method based on the solution of the beam-column differential equation. MethodsX, 11, 102248. doi:10.1016/j.mex.2023.102248.

SeismoStruct (2024). Seismosoft, Pavia, Italy. Available online: https://seismosoft.com/ (accessed on January 2024).

Lu, L., Wang, D., Dai, Z., Luo, T., Ding, S., & Hao, H. (2021). Global buckling investigation of the flanged cruciform h-shapes columns (FCHCs). Applied Sciences (Switzerland), 11(23), 11458. doi:10.3390/app112311458.

Gurupatham, B. G. A., Roy, K., Raftery, G. M., & Lim, J. B. P. (2022). Influence of Intermediate Stiffeners on Axial Capacity of Thin-Walled Built-Up Open and Closed Channel Section Columns. Buildings, 12(8), 1071. doi:10.3390/buildings12081071.

Veljkovic M, Simões Da Silva L, Simões R, Wald F, Jaspart J, Weynand J, Dubină D, Landolfo, R, Vila Real, P, Gervásio, H. (2015). Background and Applications. Design of Steel Buildings. Worked examples. Publications Office of the European Union, Luxembourg, Luxembourg.

ISO 6892-1:2019. (2019). Metallic materials-Tensile Testing - Part-1: Method of test at room temperature. International Organization for Standardization (ISO), Geneva, Switzerland.

EN 10002-1. (2001). Metallic materials-Tensile Testing - Part-1: Method of test at ambient temperature. European Committee for Standardization, Brussels, Belgium.

Malag, L., & Kukielka, L. (2007). Hybrid method to determinate the states of deformation and stress in material during the tensile test. PAMM: Proceedings in Applied Mathematics and Mechanics: Wiley‐VCH Verlag, 7(1), 2090025-2090026. doi:10.1002/pamm.200701099.

Meza, F. J., Becque, J., & Hajirasouliha, I. (2020). Experimental study of cold-formed steel built-up columns. Thin-Walled Structures, 149, 106291. doi:10.1016/j.tws.2019.106291.

Both, I., Burca, M., Benzar, S., & Ungureanu, V. (2023). Numerical Study on the Behaviour of Built-up Cold-Formed Steel Corrugated Web Beams End Connections. Civil Engineering Journal, 9(4), 770–786. doi:10.28991/CEJ-2023-09-04-01.

Selvaraj, S., & Madhavan, M. (2021). Design of cold-formed steel built-up columns subjected to local-global interactive buckling using direct strength method. Thin-Walled Structures, 159, 107305. doi:10.1016/j.tws.2020.107305.

Xu, L., Zhou, P., Chi, Y., Huang, L., Ye, J., & Yu, M. (2018). Performance of the High-Strength Self-Stressing and Self-Compacting Concrete-Filled Steel Tube Columns Subjected to the Uniaxial Compression. International Journal of Civil Engineering, 16(9), 1069–1083. doi:10.1007/s40999-017-0257-9.

Awan, A. B., & Shaikh, F. U. A. (2021). Structural behavior of recycled tire crumb rubber sandwich panel in flexural bending. Structural Concrete, 22(6), 3602-3619. doi:10.1002/suco.202100356.

O'Brien, M. (2018). Product News: AutoCAD 2019 Including Specialized Toolsets Now Available. AutoCAD 2019, Autodesk, San Francisco, United States. Available online: https://www.autodesk.com/blogs/autocad/introducing-autocad-2019-autocad-lt-2019/ (accessed on December 2023).

OriginLab Corporation. (2024). OriginPro. Northampton, United States. Available online: https://www.originlab.com/ (accessed on January 2024).

Odenbreit, C., & Nellinger, S. (2017). Mechanical model to predict the resistance of the shear connection in composite beams with deep steel decking. Steel Construction, 10(3), 248-253. doi:10.1002/stco.201710029.

Trahair, N. S., Bradford, M. A., Nethercot, D. A., & Gardner, L. (2017). The Behaviour and Design of Steel Structures to EC3 (4th Ed). CRC Press, London, United Kingdom. doi:10.1201/9781315273518.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-014


  • There are currently no refbacks.

Copyright (c) 2024 Florim H Grajcevci

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.