Optimizing Landfill Site Selection Using Fuzzy-AHP and GIS for Sustainable Urban Planning
Downloads
Doi: 10.28991/CEJ-2024-010-06-01
Full Text: PDF
[2] Dolui, S., & Sarkar, S. (2021). Identifying potential landfill sites using multicriteria evaluation modeling and GIS techniques for Kharagpur city of West Bengal, India. Environmental Challenges, 5, 100243. doi:10.1016/j.envc.2021.100243.
[3] Awadh, M. Al, & Mallick, J. (2024). A decision-making framework for landfill site selection in Saudi Arabia using explainable artificial intelligence and multi-criteria analysis. Environmental Technology & Innovation, 33, 103464. doi:10.1016/j.eti.2023.103464.
[4] Gautam, S., Brema, J., & Dhasarathan, R. (2020). Spatio-temporal estimates of solid waste disposal in an urban city of India: A remote sensing and GIS approach. Environmental Technology & Innovation, 18, 100650. doi:10.1016/j.eti.2020.100650.
[5] Kebede, H. A., & Ayenew, W. A. (2023). Solid waste disposal site selection analysis using geospatial technology in Dessie city Ethiopia. Heliyon, 9(8), 18865. doi:10.1016/j.heliyon.2023.e18865.
[6] Putra, H., Arrazzaq, A. B., Hidayatullah, R. M., Lamuse, M., Ananda, F. R., & Prayoga, A. (2023). Improving CBR Parameter of Expansive Soil Using the Carbonate Precipitation Method with Tofu Waste as a Biocatalyst. Civil Engineering Journal, 9, 163-172. doi:10.28991/CEJ-SP2023-09-013.
[7] Arabeyyat, O. S., Shatnawi, N., Shbool, M. A., & Shraah, A. Al. (2024). Landfill site selection for sustainable solid waste management using multiple-criteria decision-making. Case study: Al-Balqa governorate in Jordan. MethodsX, 12, 102591. doi:10.1016/j.mex.2024.102591.
[8] Al-Anbari, M. A., Thameer, M. Y., & Al-Ansari, N. (2018). Landfill site selection by weighted overlay technique: Case study of Al-Kufa, Iraq. Sustainability (Switzerland), 10(4), 1–11. doi:10.3390/su10040999.
[9] Šžener, E., & Šžener, Šž. (2020). Landfill site selection using integrated fuzzy logic and analytic hierarchy process (AHP) in lake basins. Arabian Journal of Geosciences, 13(21), 13. doi:10.1007/s12517-020-06087-y.
[10] Elkhrachy, I., Alhamami, A., & Alyami, S. H. (2023). Landfill Site Selection Using Multi-Criteria Decision Analysis, Remote Sensing Data, and Geographic Information System Tools in Najran City, Saudi Arabia. Remote Sensing, 15(15), 3754. doi:10.3390/rs15153754.
[11] Randazzo, L., Cusumano, A., Oliveri, G., Di Stefano, P., Renda, P., Perricone, M., & Zarcone, G. (2018). Landfill Site Selection for Municipal Solid Waste by Using AHP Method in GIS Environment: Waste Management Decision-Support in Sicily (Italy). Detritus, 2(1), 78. https://doi.org/10.31025/2611-4135/2018.13656.
[12] İskurt, Ç., Aliyev, E., Gengec, E., Kobya, M., & Khataee, A. (2022). Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. Chemosphere, 307. doi:10.1016/j.chemosphere.2022.135954.
[13] Roy, D., Prakash Samajdar, D., & Biswas, A. (2022). Design of hybrid solar cell with GaAs1−xBix (x = 0.01) nanowire core and conformally coated P3HT/ITO shell. Solar Energy, 238, 1–8. doi:10.1016/j.solener.2022.04.019.
[14] Pan, J., Deng, Y., Yang, Y., & Zhang, Y. (2023). Location-allocation modelling for rational health planning: Applying a two-step optimization approach to evaluate the spatial accessibility improvement of newly added tertiary hospitals in a metropolitan city of China. Social Science and Medicine, 338, 116296. doi:10.1016/j.socscimed.2023.116296.
[15] Balist, J., Nahavandchi, M., & Bidar, G. S. (2021). Landfill Site Selection Using Fuzzy Logic & AHP & WLC (Case study: Razan city - Iran). Journal of Civil Engineering Frontiers, 2(01), 01–07. doi:10.38094/jocef20129.
[16] Abdelouhed, F., Ahmed, A., Abdellah, A., Yassine, B., & Mohammed, I. (2022). GIS and remote sensing coupled with analytical hierarchy process (AHP) for the selection of appropriate sites for landfills: a case study in the province of Ouarzazate, Morocco. Journal of Engineering and Applied Science, 69(1), 1–23. doi:10.1186/s44147-021-00063-3.
[17] Benabbou, A. (2024). Land use suitability analysis using an approach combining GIS, regionalization, and PROMETHEE II. Annals of GIS, 30(1), 121–136. doi:10.1080/19475683.2024.2304183.
[18] Oveisi, S., & Afzali, A. (2020). Selecting Municipal Solid Waste Landfill Site in Kashan City Using OWA and TOPSIS Fuzzy Methods. Desert Ecosystem Engineering Journal. doi:10.22052/deej.2020.9.27.51.
[19] Alikhani, M., Rahimi, E., & Khairy, H. (2024). Landfill site selection of Sari city using analytic network process model. Kharazmi Journal of Earth Sciences, 9(2), 250-276.
[20] Islam, M., Kashem, S., & Morshed, S. (2020). Integrating spatial information technologies and fuzzy analytic hierarchy process (F-AHP) approach for landfill siting. City and Environment Interactions, 7, 100045. doi:10.1016/j.cacint.2020.100045.
[21] Ali, S. A., & Ahmad, A. (2020). Suitability analysis for municipal landfill site selection using fuzzy analytic hierarchy process and geospatial technique. Environmental Earth Sciences, 79(10). doi:10.1007/s12665-020-08970-z.
[22] Mallick, J. (2021). Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in ASIR region Saudi Arabia. Sustainability (Switzerland), 13(3), 1-33. doi:10.3390/su13031538.
[23] Mousavi, S. M., Darvishi, G., Mobarghaee Dinan, N., & Naghibi, S. A. (2022). Optimal Landfill Site Selection for Solid Waste of Three Municipalities Based on Boolean and Fuzzy Methods: A Case Study in Kermanshah Province, Iran. Land, 11(10), 1779. doi:10.3390/land11101779.
[24] Paul, S., & Ghosh, S. (2022). Identification of solid waste dumping site suitability of Kolkata Metropolitan Area using Fuzzy-AHP model. Cleaner Logistics and Supply Chain, 3. doi:10.1016/j.clscn.2022.100030.
[25] Kamdar, I., Ali, S., Bennui, A., Techato, K., & Jutidamrongphan, W. (2019). Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling, 149, 220–235. doi:10.1016/j.resconrec.2019.05.027.
[26] Tercan, E., Dereli, M. A., & Tapkın, S. (2020). A GIS-based multi-criteria evaluation for MSW landfill site selection in Antalya, Burdur, Isparta planning zone in Turkey. Environmental Earth Sciences, 79(10), 1–17. doi:10.1007/s12665-020-08974-9.
[27] Eghtesadifard, M., Afkhami, P., & Bazyar, A. (2020). An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis. Environmental Research, 185, 185. doi:10.1016/j.envres.2020.109348.
[28] Zarin, R., Azmat, M., Naqvi, S. R., Saddique, Q., & Ullah, S. (2021). Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environmental Science and Pollution Research, 28(16), 19726–19741. doi:10.1007/s11356-020-11975-7.
[29] Xue, L., Cao, P., Xu, D., Guo, Y., Wang, Q., Zheng, X., Han, R., & You, A. (2023). Agricultural land suitability analysis for an integrated rice–crayfish culture using a fuzzy AHP and GIS in central China. Ecological Indicators, 148. doi:10.1016/j.ecolind.2022.109837.
[30] Ajibade, F. O., Olajire, O. O., Ajibade, T. F., Nwogwu, N. A., Lasisi, K. H., Alo, A. B., Owolabi, T. A., & Adewumi, J. R. (2019). Combining multicriteria decision analysis with GIS for suitably siting landfills in a Nigerian state. Environmental and Sustainability Indicators, 3–4. doi:10.1016/j.indic.2019.100010.
[31] Ohri, A., & Singh, P. K. (2013). GIS based environmental decision support system for municipal landfill site selection. Management of Environmental Quality: An International Journal, 24(5), 583–598. doi:10.1108/MEQ-08-2012-0056.
[32] Djokanović, S., Abolmasov, B., & Jevremović, D. (2016). GIS application for landfill site selection: a case study in PanÄevo, Serbia. Bulletin of Engineering Geology and the Environment, 75(3), 1273–1299. doi:10.1007/s10064-016-0888-0.
[33] Cobos, S., Solano, J., Vera, A., & Monge, J. (2017, November). Multicriteria analysis based on GIS to identify potential areas for the location of a joint landfill in the province of Azuay. XVI Conferencia Iberoamericana de Sistemas de Información Geográfica (CONFIBSIG), 16-19 May, 2023, Cáceres, Spain. (In Spanish).
[34] Alanbari, M. A., Al-Ansari, N., Jasim, H. K., & Knutsson, S. (2014). Modeling Landfill Suitability Based on GIS and Multicriteria Decision Analysis: Case Study in Al-Mahaweelqadaa. Natural Science, 06(11), 828–851. doi:10.4236/ns.2014.611081.
[35] Al-Anbari, M., Thameer, M., Al-Ansari, N., & Knutsson, S. (2016). Landfill Site Selection in Al-Najaf Governorate, Iraq. Journal of Civil Engineering and Architecture, 10(6). doi:10.17265/1934-7359/2016.06.003.
[36] Sisay, G., Gebre, S. L., & Getahun, K. (2021). GIS-based potential landfill site selection using MCDM-AHP modeling of Gondar Town, Ethiopia. African Geographical Review, 40(2), 105–124. doi:10.1080/19376812.2020.1770105.
[37] Ayaim, M. K., Fei-Baffoe, B., Sulemana, A., Miezah, K., & Adams, F. (2019). Potential sites for landfill development in a developing country: A case study of Ga South Municipality, Ghana. Heliyon, 5(10), 2537. doi:10.1016/j.heliyon.2019.e02537.
[38] Mohammed, H. I., Majid, Z., & Yamusa, Y. B. (2019). GIS based sanitary landfill suitability analysis for sustainable solid waste disposal. IOP Conference Series: Earth and Environmental Science, 220, 012056. doi:10.1088/1755-1315/220/1/012056.
[39] Ersoy, H., & Bulut, F. (2009). Spatial and multi-criteria decision analysis-based methodology for landfill site selection in growing urban regions. Waste Management and Research, 27(5), 489–500. doi:10.1177/0734242X08098430.
[40] Alkaradaghi, K., Ali, S. S., Al-Ansari, N., & Laue, J. (2020). Landfill Site Selection Using GIS and Multi-Criteria Decision-Making AHP and SAW Methods: A Case Study in Sulaimaniyah Governorate, Iraq. Engineering, 12(04), 254–268. doi:10.4236/eng.2020.124021.
[41] Sener, B., Süzen, M. L., & Doyuran, V. (2006). Landfill site selection by using geographic information systems. Environmental Geology, 49(3), 376–388. doi:10.1007/s00254-005-0075-2.
[42] Najjari, A., & Shayesteh, K. (2019). Site Selection for Hazardous Waste Using Fuzzy Logic Combined with Analytic Hierarchy Process: A Case study in Nahavand, Iran. Avicenna Journal of Environmental Health Engineering, 6(1), 8–15. doi:10.34172/ajehe.2019.02.
[43] Zabaleta Santisteban, J. A. (2019). Location of a Sanitary Landfill in the Naranjál Canton, through a Hierarchical Analysis Process Based on Geographic Information Systems. Universidad Nacional Toribio Rodr íguez de Mendoza (UNTRM), Chachapoyas, Peru.
[44] Khorsandi, H., Faramarzi, A., Aghapour, A. A., & Jafari, S. J. (2019). Landfill site selection via integrating multi-criteria decision techniques with geographic information systems: a case study in Naqadeh, Iran. Environmental Monitoring and Assessment, 191(12). doi:10.1007/s10661-019-7863-8.
[45] MINEDU (2024). Descarga de Información Espacial Del Ministerio de Educación. Ministerio de Educación, Lima, Perú. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on April 2024).
[46] ERNANP (2024). Viewer of Protected Natural Areas. Servicio Nacional de íreas Naturales Protegidas por el Estado, Lima, Perú. Available online: http://geo.sernanp.gob.pe/visorsernanp/ (accessed on May 2024). (In Spanish).
[47] Silva López, J. O., Salas López, R., Rojas Briceño, N. B., Gómez Fernández, D., Terrones Murga, R. E., Iliquín Trigoso, D., Barboza Castillo, E., Oliva Cruz, M., & Barrena Gurbillón, M. í. (2022). Analytic Hierarchy Process (AHP) for a Landfill Site Selection in Chachapoyas and Huancas (NW Peru): Modeling in a GIS-RS Environment. Advances in Civil Engineering, 9733322. doi:10.1155/2022/9733322.
[48] MTC (2024). Download of Spatial Data-Land Transport by Road. Ministerio de Trasmportes y Comunicaciones, Lima, Perú. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on May 2024). (In Spanish).
[49] Logan, T.A., Nicoll, J., Laurencelle, J., Hogenson, K., Gens, R., & Buechler, B. (2014). Radiometrically Terrain Corrected ALOS PALSAR Data Available from the Alaska Satellite Facility. American Geophysical Union, Washington, United States. Available online: https://ui.adsabs.harvard.edu/abs/2014AGUFMIN33B3762L/abstract (accessed on May 2024).
[50] Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. doi:10.1002/joc.5086.
[51] Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. doi:10.5194/soil-7-217-2021.
[52] Ally, A. M., Yan, J., Bennett, G., Lyimo, N. N., & Mayunga, S. D. (2024). Assessment of groundwater potential zones using remote sensing and GIS-based fuzzy analytical hierarchy process (F-AHP) in Mpwapwa District, Dodoma, Tanzania. Geosystems and Geoenvironment, 3(1), 100232. doi:10.1016/j.geogeo.2023.100232.
[53] Gumus, A. T. (2009). Evaluation of hazardous waste transportation firms by using a twostep fuzzy-AHP and TOPSIS methodology. Expert Systems with Applications, 36(2 PART 2), 4067–4074. doi:10.1016/j.eswa.2008.03.013.
[54] Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. doi:10.1016/0022-2496(77)90033-5.
[55] Saaty, T. L. (1994). Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Chalfont St Peter, United Kingdom.
[56] Eastman, J. R. (2003). IDRISI Kilimanjaro: guide to GIS and image processing. Clark Labs, Clark University, Worcester, United States.
[57] Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. doi:10.1016/0165-0114(85)90090-9.
[58] Salari, S., Sadeghi-Yarandi, M., & Golbabaei, F. (2024). An integrated approach to occupational health risk assessment of manufacturing nanomaterials using Pythagorean Fuzzy AHP and Fuzzy Inference System. Scientific Reports, 14(1), 1–13. doi:10.1038/s41598-023-48885-w.
[59] Kadapa, H. (2024). A comprehensive framework for landslide risk assessment of archaeological sites in Gujarat, India. Egyptian Journal of Remote Sensing and Space Science, 27(1), 41–51. doi:10.1016/j.ejrs.2024.01.002.
[60] Mortazavi Chamchali, M., Mohebbi Tafreshi, A., & Mohebbi Tafreshi, G. (2021). Utilizing GIS linked to AHP for landfill site selection in Rudbar County of Iran. GeoJournal, 86(1), 163–183. doi:10.1007/s10708-019-10064-8.
[61] dos Santos, J. S., Girardi, A. G., & Brasil, A. A. (2007). Use of geoprocessing to locate landfill areas in the city of Alegrete-RS. Proceedings of the Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, 21-26 April, 2007, Florianopolis, Brazil.
[62] Bustamante, C. (20123). Diagnóstico Ambiental Local de La Provincia de Luya – Lámud. Local Environmental Diagnosis – Province of Luya, Peru. (In Spanish).
[63] Gob.pe (2020). Informe N° 024-2020-GOB.REG.AMAZONAS/U.E.PROAMAZONAS/DOVP. Peruvian State, Peru. Available online: https://cdn.www.gob.pe/uploads/document/file/2078149/050.pdf.pdf (accessed on May 2024).
[64] Jaramillo, J. (2003). Guidelines for the design, construction and operation of manual sanitary landfills. Pan American Center for Sanitary Engineering and Environmental Science, Lima, Peru.
[65] INEI. (2017). Perfil Sociodemográfico. Instituto Nacional de Estadística e Informática, Lima, Peru. (In Spanish).
[66] Aduriz, M. A., Gargano, A. O., Chimeno, P., Saldungaray, M. C., & Conti, V. P. (2003). Characterization of the predominant agrosystems of the upper basin of the Sauce Grande River. RIA. Revista de Investigaciones Agropecuarias, 32(3), 3-25. (In Spanish).
[67] Vargas-Piedra, G., Valdez-Cepeda, R. D., López-Santos, A., Flores-Hernández, A., Hernández-Quiroz, N. S., & Martínez-Salvador, M. (2020). Current and Future Potential Distribution of the Xerophytic Shrub Candelilla (Euphorbia antisyphilitica) under Two Climate Change Scenarios. Forests, 11(5), 530. doi:10.3390/f11050530.
[68] Orhan, O. (2021). Land suitability determination for citrus cultivation using a GIS-based multi-criteria analysis in Mersin, Turkey. Computers and Electronics in Agriculture, 190, 106433. doi:10.1016/j.compag.2021.106433.
[69] Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., & Sattarian, A. (2014). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909–926. doi:10.1007/s13762-013-0464-0.
[70] Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., & Ekercin, S. (2012). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environmental Earth Sciences, 66(7), 2063–2073. doi:10.1007/s12665-011-1432-y.
[71] Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857), 1285–1293. doi:10.1126/science.3287615.
[72] Yesilnacar, E. K. (2005). The application of computational intelligence to landslide susceptibility mapping in Turkey. University of Melbourne, Parkville, Australia.
[73] Ali, S. A., Parvin, F., Al-Ansari, N., Pham, Q. B., Ahmad, A., Raj, M. S., Anh, D. T., Ba, L. H., & Thai, V. N. (2021). Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environmental Science and Pollution Research, 28(6), 7528–7550. doi:10.1007/s11356-020-11004-7.
[74] Redjem, A. L. I., Benyahia, A. Z. Z. E. D. I. N. E., Dougha, M. O. S. T. E. F. A., Nouibat, B. R. A. H. I. M., Hasbaia, M. A. H. M. O. U. D., & Ozer, A. (2021). Combining the Analytic Hierarchy Process with GIS for Landfill Site Selection: The Case of the Municipality of M'sila, Algeria. Revue Roumaine de Géographie, 65(2), 171-186.
[75] Magoura, A., Dehimi, S., & Redjem, A. (2023). A GIS-based multi-criteria evaluation of landfill site selection in the region of Hodna, Algeria. Journal of Degraded and Mining Lands Management, 10(4), 4709. doi:10.15243/jdmlm.2023.104.4709.
[76] Uyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental Earth Sciences, 71(4), 1629–1639. doi:10.1007/s12665-013-2567-9.
[77] MINAM. (2021). Guide for the Identification of Potential Areas for Municipal Solid Waste Final Disposal Infrastructure. Ministerio del Ambiente (MINAM), Lima, Peru. (In Spanish).
[78] Duru, O., Bulut, E., & Yoshida, S. (2012). Regime switching fuzzy AHP model for choice-varying priorities problem and expert consistency prioritization: A cubic fuzzy-priority matrix design. Expert Systems with Applications, 39(5), 4954–4964. doi:10.1016/j.eswa.2011.10.020.
[79] Adewumi, J. R., Ejeh, O. J., Lasisi, K. H., & Ajibade, F. O. (2019). A GIS–AHP-based approach in siting MSW landfills in Lokoja, Nigeria. SN Applied Sciences, 1(12), 1528. doi:10.1007/s42452-019-1500-6.
[80] Khodaparast, M., Rajabi, A. M., & Edalat, A. (2018). Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental Earth Sciences, 77(2), 1–12. doi:10.1007/s12665-017-7215-3.
[81] Asefa, B., & Mindahun, W. (2020). Suitable Solid Waste Disposal Site Selection Using Geographical Information System: A Case of Debre Markos Town, Ethiopia. Journal of Environment and Earth Science, 9(2), 1-8. doi:10.7176/jees/10-8-03.
[82] Bouroumine, Y., Bahi, L., Ouadif, L., Elhachmi, D., & Ait Errouhi, A. (2020). Sitting MSW landfill combining GIS and analytic hierarchy process (AHP), case study: Ajdir, Morocco. International Journal of Advanced Research in Engineering and Technology, 11(5), 318–328. doi:10.34218/IJARET.11.5.2020.033.
[83] Musana, R. F., Rucamumihigo, F. X., Nirere, D., & Mbaraka, S. R. (2020). Growth and yield performance of common bean (Phaseolus vulgaris L.) as influenced by plant density at Nyagatare, East Rwanda. African Journal of Food, Agriculture, Nutrition and Development, 20(4), 16249–16261. doi:10.18697/ajfand.92.18700.
[84] Rezaeisabzevar, Y., Bazargan, A., & Zohourian, B. (2020). Landfill site selection using multi criteria decision making: Influential factors for comparing locations. Journal of Environmental Sciences (China), 93, 170–184. doi:10.1016/j.jes.2020.02.030.
[85] Pasalari, H., Nodehi, R. N., Mahvi, A. H., Yaghmaeian, K., & Charrahi, Z. (2019). Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6, 1454–1466. doi:10.1016/j.mex.2019.06.009.
[86] Spigolon, L. M. G., Giannotti, M., Larocca, A. P., Russo, M. A. T., & Souza, N. da C. (2018). Landfill siting based on optimisation, multiple decision analysis, and geographic information system analyses. Waste Management and Research, 36(7), 606–615. doi:10.1177/0734242x18773538.
[87] Bilgilioglu, S. S., Gezgin, C., Orhan, O., & Karakus, P. (2022). A GIS-based multi-criteria decision-making method for the selection of potential municipal solid waste disposal sites in Mersin, Turkey. Environmental Science and Pollution Research, 29(4), 5313–5329. doi:10.1007/s11356-021-15859-2.
[88] Chabuk, A., Al-Ansari, N., Hussain, H., Knutsson, S., Pusch, R., & Laue, J. (2017). Combining GIS Applications and Method of Multi-Criteria Decision-Making (AHP) for Landfill Siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability, 9(11), 1932. doi:10.3390/su9111932.
[89] Karabulut, A. İ., Yazici-Karabulut, B., Derin, P., Yesilnacar, M. I., & Cullu, M. A. (2022). Landfill siting for municipal solid waste using remote sensing and geographic information system integrated analytic hierarchy process and simple additive weighting methods from the point of view of a fast-growing metropolitan area in GAP area of Turkey. Environmental Science and Pollution Research, 29(3), 4044–4061. doi:10.1007/s11356-021-15951-7.
[90] Ahire, V., Behera, D. K., Saxena, M. R., Patil, S., Endait, M., & Poduri, H. (2022). Potential landfill site suitability study for environmental sustainability using GIS-based multi-criteria techniques for Nashik and environs. Environmental Earth Sciences, 81(6). doi:10.1007/s12665-022-10295-y.
[91] Mustafa, F. B., & Bwadi, B. E. (2018). Determination of Optimal Freshwater Prawn Farming Site Locations using GIS and Multicriteria Evaluation. Journal of Coastal Research, 82, 41–54. doi:10.2112/SI82-006.1.
[92] Palacios, I. (2018). Sanitary Landfill in the City of Macas, Through the Weighting of Its Variables with the Process. Journal of Security and Defense Sciences, III, 83–94.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.