Utilization of Hybrid SIFCON to Improve Performance and Properties of Slab System Openings

Esraa Kh. Abuzaid, S. A. Osman, Azrul A. Mutalib, Salah R. Al-Zaidee

Abstract


This research aims to enhance Slurry Infiltrated Fibrous Concrete (SIFCON) by incorporating both long and short fibers, with the goal of increasing ductility and mechanical properties behavior. The study also evaluates the effectiveness of SIFCON in strengthening two-way reinforced concrete slabs with large openings. Various SIFCON mixes were created, integrating hooked-end fibers, micro steel fibers, and different volume ratios (Vf) of hybrid steel fibers (one-third, one-half, and two-thirds). A reference mix with 2% hybrid fiber-reinforced concrete (SFC) was formulated for comparison. Hybrid SIFCON samples demonstrated superior mechanical properties compared to those reinforced with hooked fibers, showing higher compressive strength, cylinder compressive strength, flexural strength, and direct tensile strength by 14%, 13.9%, 38.2%, and 58.2%, respectively, at 28 days, but a lower splitting tensile strength by 24%. Compared to micro steel fiber-reinforced samples, hybrid SIFCON exhibited higher compressive strength, cylinder compressive strength, flexural strength, and splitting tensile strength by 18.2%, 51%, 167.5%, and 43.6%, respectively, but a lower direct tensile strength by 7.4%. The study involved nine two-way square slabs with various mixtures of normal concrete, mortar-infiltrated fiber concrete, and full SIFCON. Control samples were constructed using normal-strength concrete. The application of SIFCON increased punching shear strength by 3.21% to 154.25% compared to the control samples.

 

Doi: 10.28991/CEJ-2024-010-11-07

Full Text: PDF


Keywords


SIFCON; Hooked Steel Fiber; Hybrid Steel Fiber; Micro Steel Fiber; Split Strength; Flexural Strength; Slab System Openings.

References


Abdul Kudus, S., Mohd Din, S. H. A., Mohammed, M. S. H. S., Roopa, V., & Ahmad, Z. (2024). Performance of GFRP Sheets in Strengthening Concrete Beams in Flexure. Jurnal Kejuruteraan, 36(4), 1689–1697. doi:10.17576/jkukm-2024-36(4)-31.

Arain, F. A., Jatoi, M. A., Raza, M. S., Shaikh, F. A., Khowaja, F., & Rai, K. (2022). Preliminary Investigation on Properties of Novel Sustainable Composite: Fish Scales Reinforced Cement Concrete. Jurnal Kejuruteraan, 34(2), 309–315. doi:10.17576/jkukm-2022-34(2)-14.

Casadei, P., Ibell, T., & Nanni, A. (2003). Experimental Results of One-Way Slabs with Openings Strengthened with CFRP Laminates. Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 1097–1106. doi:10.1142/9789812704863_0105.

Genikomsou, A. S., & Anna Polak, M. (2017). Effect of openings on punching shear strength of reinforced concrete slabs-finite element investigation. ACI Structural Journal, 114(5), 1249–1262. doi:10.14359/51689871.

Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S. K., & Bagherzadeh, A. (2010). Behaviour of Slurry Infiltrated Fibre Concrete (SIFCON) under triaxial compression. Cement and Concrete Research, 40(11), 1571–1581. doi:10.1016/j.cemconres.2010.06.009.

Jayashree, S. M., Rakul, B. R., & Helen, S. M. (2013). Flexural Behaviour of SIFCON Beams. International Journal of Engineering Research & Technology, 2(2), 1–7.

Ipek, M., Aksu, M., Yilmaz, K., & Uysal, M. (2014). The effect of pre-setting pressure on the flexural strength and fracture toughness of SIFCON during the setting phase. Construction and Building Materials, 66, 515–521. doi:10.1016/j.conbuildmat.2014.04.107.

Siva Chidambaram, R., & Agarwal, P. (2015). Seismic behavior of hybrid fiber reinforced cementitious composite beam-column joints. Materials & Design, 86, 771–781. doi:10.1016/j.matdes.2015.07.164.

Ahmed Salih, S., Jwad Frayyeh, Q., & Abed Al-wahab Ali, M. (2018). Flexural Behavior of Slurry Infiltrated Fiber Concrete (Sifcon) Containing Supplementary Cementitiouse Materials. Journal of Engineering and Sustainable Development, 22(2), 35–48. doi:10.31272/jeasd.2018.2.32.

Yan, A., Wu, K., & Zhang, X. (2002). A quantitative study on the surface crack pattern of concrete with high content of steel fiber. Cement and Concrete Research, 32(9), 1371–1375. doi:10.1016/S0008-8846(02)00788-3.

Naaman, H. N. A. E., & Otter, D. (1992). Elastic Modulus of SIFCON in Tension and Compression. ACI Materials Journal, 88(6), 603–613. doi:10.14359/1197.

Abuzaid, K.E., Osman, S. A., Amutalib, A. Bin, & Al Zaidee, S. R. (2024). Slurry Infiltrated Fiber Concrete Properties: A Review. Jurnal Kejuruteraan, 36(1), 155–167. doi:10.17576/jkukm-2024-36(1)-15.

Parra-Montesinos, G. J., & Reinhardt, H. W. (2012). High performance fiber reinforced cement composites 6: HPFRCC 6 (Vol. 2). Springer Science & Business Media, Dordrecht, Netherlands.

Marković, I. (2006). High-performance hybrid-fibre concrete: development and utilisation. IOS Press, Amsterdam, Netherlands.

Zamrodah, Y. (2018). Properties of slurry infiltrated fiber concrete (SIFCON). Ph.D. Thesis, University of Technology, Baghdad, Iraq.

Elsayed, M., Tayeh, B. A., & Kamal, D. (2021). Effect of crumb rubber on the punching shear behaviour of reinforced concrete slabs with openings. Construction and Building Materials, 311. doi:10.1016/j.conbuildmat.2021.125345.

Naser, R. A., & Shadhan, K. K. (2023). Nonlinear Analysis of Slurry Infiltrated Fiber Concrete Vierendeel Truss. Journal of University of Babylon for Engineering Sciences, 31(5), 37-54.

Abbas, M. F., & Mosheer, K. A. M. (2023). Mechanical properties of slurry-infiltrated fiber concrete (SIFCON) as sustainable material with variable fiber content. IOP Conference Series: Earth and Environmental Science, 1232(1), 012025. doi:10.1088/1755-1315/1232/1/012025.

No.45/1984. (1984). Portland cement. Iraq standard specification (IQS), Baghdad, Iraq.

No. 45. (1984). Natural sources of aggregate used in building and concrete. Iraq standard specification (IQS), Baghdad, Iraq.

ASTM C494/C494M-17. (2020). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-17.

ASTM C1240-20. (2020). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/C1240-20.

ASTM C618-17a. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-17A.

BS 1881-116. (1983). Testing Concrete. Method for Determination of Compressive Strength of Concrete Cubes. BSI, London, United Kingdom.

ASTM C39/C39M-21. (2023). Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.

ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.

ASTM C1609/C1609M-12. (2019). Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C1609_C1609M-12.

ASTM C469/C469M-14. (2021). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-14.

Al-Abdalay, N. M., Zeini, H. A., & Kubba, H. Z. (2019). Effect of impact load on SIFCON. Global Journal of Research in Engineering, 19(2), 17-27.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-11-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 esraa Khudhair Abuzaid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message