Use of Recycled Ceramic Powder as a Green Alternative in Mortar-Based Cementitious Composites

Luma A. G. Zghair, Mohammad Z. Yousif, Luay K. Salman, Rwayda Kh. S. Al-Hamd, Mazin M. Sarhan

Abstract


Recognizing material waste as a significant global concern has influenced both the environment and the construction industry. The utilization of ceramic waste as a recycled material in construction projects has gained attention as an effective and sustainable approach to address environmental issues. This study examines the use of waste ceramic tile powder (WCTP) as a supplementary material in cement mortars to decrease the amount of cement required. WCTP was used in place of cement at percentages of 5%, 10%, and 20%. Four different mix designs were created and tested for the study, yielding a total of 48 specimens. Numerous investigations were carried out, including flow table evaluations, measures of dry density, assessments of compressive and flexural strengths, X-ray diffraction, and SEM-EDX testing. The objective of these investigations was to evaluate the specimens' mechanical and physical characteristics as a whole. The findings showed that using ceramic powder in place of some cement might enhance the properties of the mortar. The compressive and flexural strengths of the mortar were notably impacted by replacing 10% of the cement content with ceramic powder. The inclusion of ceramic powder significantly enhanced the mortar's microstructure interface, according to SEM-EDX studies. In the end, the utilization of ceramic powder was found to have a substantial positive impact on the environment by reducing waste.

 

Doi: 10.28991/CEJ-2024-010-10-03

Full Text: PDF


Keywords


Waste Ceramic Powder; Strengths; FE-SEM; EDX; Microstructure.

References


Helmy, S. H., Tahwia, A. M., Mahdy, M. G., & Elrahman, M. A. (2023). Development and characterization of sustainable concrete incorporating a high volume of industrial waste materials. Construction and Building Materials, 365, 130160. doi:10.1016/j.conbuildmat.2022.130160.

Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. doi:10.1016/j.jclepro.2020.121825.

Özkılıç, Y. O., Althaqafi, E., Bahrami, A., Aksoylu, C., Karalar, M., Özdöner, N., Shcherban, E. M., Stel’makh, S. A., Beskopylny, A., & Thomas, B. S. (2024). Influence of ceramic waste powder on shear performance of environmentally friendly reinforced concrete beams. Scientific Reports, 14(1), 10401. doi:10.1038/s41598-024-59825-7.

Mezidi, A., Merabti, S., Benyamina, S., & Sadouki, M. (2023). Effect of Substituting White Cement with Ceramic Waste Powders (CWP) on the Performance of a Mortar Based on Crushed Sand. Advances in Materials Science, 23(4), 123–133. doi:10.2478/adms-2023-0026.

Etman, H. M., Elshikh, M. M. Y., Kaloop, M. R., Hu, J. W., & Abd ELMohsen, I. (2024). Examination of the Physical–Mechanical Properties of Sustainable Self-Curing Concrete Using Crushed Ceramic, Volcanic Powder, and Polyethylene Glycol. Sustainability (Switzerland), 16(11), 4659. doi:10.3390/su16114659.

Gautam, L., Bansal, S., Vaibhav Sharma, K., & Kalla, P. (2023). Bone-china ceramic powder and granite industrial by-product waste in self-compacting concrete: A durability assessment with statistical validation. Structures, 54, 837–856. doi:10.1016/j.istruc.2023.05.094.

Bayraktar, O. Y., Tunçtan, M., Benli, A., Türkel, İ., Kızılay, G., & Kaplan, G. (2024). A study on sustainable foam concrete with waste polyester and ceramic powder: Properties and durability. Journal of Building Engineering, 95, 110253. doi:10.1016/j.jobe.2024.110253.

Goyal, R. K., Agarwal, V., Gupta, R., Rathore, K., & Somani, P. (2021). Optimum utilization of ceramic tile waste for enhancing concrete properties. Materials Today: Proceedings, 49, 1769–1775. doi:10.1016/j.matpr.2021.08.011.

Mangi, S. A., Raza, M. S., Khahro, S. H., Qureshi, A. S., & Kumar, R. (2022). Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: a review. Environmental Science and Pollution Research, 29(13), 18311–18332. doi:10.1007/s11356-021-18105-x.

Anderson, D. J., Smith, S. T., & Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Construction and Building Materials, 117, 20–28. doi:10.1016/j.conbuildmat.2016.04.153.

El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement – Characterization and evaluation. Sustainable Materials and Technologies, 17, 63. doi:10.1016/j.susmat.2018.e00063.

Lavat, A. E., Trezza, M. A., & Poggi, M. (2009). Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29(5), 1666–1674. doi:10.1016/j.wasman.2008.10.019.

Ferrara, L., Deegan, P., Pattarini, A., Sonebi, M., & Taylor, S. (2019). Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixes. Journal of Sustainable Cement-Based Materials, 8(3), 145–160. doi:10.1080/21650373.2018.1564396.

Oleng, M., Kanali, C., Gariy, Z., & Ronoh, E. E. (2018). Physical and Chemical Properties of Crushed Ceramic and Porcelain Clay Tile Powder. International Journal of Engineering and Applied Sciences Research, 7(7), 1–5.

AlArab, A., Hamad, B., Chehab, G., & Assaad, J. J. (2020). Use of Ceramic-Waste Powder as Value-Added Pozzolanic Material with Improved Thermal Properties. Journal of Materials in Civil Engineering, 32(9), 4020243. doi:10.1061/(asce)mt.1943-5533.0003326.

Awoyera, P. O., Akinmusuru, J. O., Ndambuki, J. M., & Lucas, S. S. (2017). Benefits of using ceramic tile waste for making sustainable concrete. Journal of Solid Waste Technology and Management, 43(3), 233–241. doi:10.5276/JSWT.2017.233.

de Matos, P. R., Sakata, R. D., Onghero, L., Uliano, V. G., de Brito, J., Campos, C. E. M., & Gleize, P. J. P. (2021). Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. Journal of Building Engineering, 38, 102187. doi:10.1016/j.jobe.2021.102187.

Aksoylu, C., Özkılıç, Y. O., Bahrami, A., Yıldızel, S. A., Hakeem, I. Y., Özdöner, N., Başaran, B., & Karalar, M. (2023). Application of waste ceramic powder as a cement replacement in reinforced concrete beams toward sustainable usage in construction. Case Studies in Construction Materials, 19, e02444. doi:10.1016/j.cscm.2023.e02444.

Taher, M. J., Abed, E. H., & Hashim, M. S. (2023). Using ceramic waste tile powder as a sustainable and eco-friendly partial cement replacement in concrete production. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.060.

Ebrahimi, M., Eslami, A., Hajirasouliha, I., Ramezanpour, M., & Pilakoutas, K. (2023). Effect of ceramic waste powder as a binder replacement on the properties of cement- and lime-based mortars. Construction and Building Materials, 379, 131146. doi:10.1016/j.conbuildmat.2023.131146.

Tawfik, T. A., Sičáková, A., Kuzielová, E., Kušnír, Š., Eštoková, A., Bálintová, M., & Junáková, N. (2024). Sustainable reuse of waste ceramic tiles powder and waste brick powder as a replacement for cement on green high strength concrete properties. Innovative Infrastructure Solutions, 9(5), 166. doi:10.1007/s41062-024-01498-2.

Samadi, M., Hussin, M. W., Seung Lee, H., Mohd Sam, A. R., A. Ismail, M., Abdul Shukor Lim, N. H., Ariffin, N. F., & Nur, N. H. (2015). Properties of mortar containing ceramic powder waste as cement replacement. Jurnal Teknologi, 77(12), 93–97. doi:10.11113/jt.v77.6315.

Li, L., Liu, W., You, Q., Chen, M., & Zeng, Q. (2020). Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853. doi:10.1016/j.jclepro.2020.120853.

Xu, K., Huang, W., Zhang, L., Fu, S., Chen, M., Ding, S., & Han, B. (2021). Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder. Construction and Building Materials, 287, 123036. doi:10.1016/j.conbuildmat.2021.123036.

Mohit, M., & Sharifi, Y. (2019). Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials. Construction and Building Materials, 223, 643–656. doi:10.1016/j.conbuildmat.2019.07.029.

Mohammadhosseini, H., Lim, N. H. A. S., Tahir, M. Md., Alyousef, R., & Samadi, M. (2019). RETRACTED ARTICLE: Performance evaluation of green mortar comprising ceramic waste as cement and fine aggregates replacement. SN Applied Sciences, 1(6). doi:10.1007/s42452-019-0566-5.

Nasr, M. S., Salih, M. A., Shubbar, A., Falah, M. W., & Abadel, A. A. (2023). Influence of mechanical activation on the behavior of green high-strength mortar including ceramic waste. Materials Science - Poland, 41(4), 41–56. doi:10.2478/msp-2023-0046.

Patel, H., Arora, N. K., & Vaniya, S. R. (2015). Use of ceramic waste powder in cement concrete. International Journal for Innovative Research in Science & Technology, 2(1), 91-97.

Central Organization for Standardization and Quality Control. (1984). Portland cement, No.5. Central Organization for Standardization and Quality Control, Baghdad, Iraq.

ASTM C618-15. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-15.

ASTM C494/C494M-19e1. (2024). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19E01.

ASTM C1437-07. (2013). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-07.

Pal M. S., Bharadwaj A., Pastariya S., & Mehta S. (2021). Experimental Investigation on Partial Replacement of Fine Aggregate with Ceramic Waste on M25 grade Concrete. International Research Journal of Engineering and Technology (IRJET), 8(9), 1836-1840.

Alsaif, A. (2021). Utilization of ceramic waste as partially cement substitute – A review. Construction and Building Materials, 300, 124009. doi:10.1016/j.conbuildmat.2021.124009.

Mohit, M., & Sharifi, Y. (2019). Ceramic waste powder as alternative mortar-based cementitious material. ACI Materials Journal, 116(6), 107–116. doi:10.14359/51716819.

Al-Khafaji, B. T., & Behaya, S. A. (2015). Effect of Ceramic Powder (Cp) on Compressive Strength and Drying Shrinkage Cracks of Cement Mortar. Kufa Journal of Engineering, 6(2), 63–75. doi:10.30572/2018/kje/621153.

Al-Fakih, A., Odeh, A., Mahamood, M. A. A., Al-Shugaa, M. A., Al-Osta, M. A., & Ahmad, S. (2023). Review of the Properties of Sustainable Cementitious Systems Incorporating Ceramic Waste. Buildings, 13(8), 2105. doi:10.3390/buildings13082105.

Yue, W., & Wang, B. (2024). Ceramic-added lime and cement mortars: A review of applications in building products. Science Progress, 107(3). doi:10.1177/00368504241266559.

Jamil, M., Khan, M. N. N., Karim, M. R., Kaish, A. B. M. A., & Zain, M. F. M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Construction and Building Materials, 128, 185-198. doi:10.1016/j.conbuildmat.2016.10.029.

Nazari, A., & Riahi, S. (2012). Withdrawn: The effect of aluminium oxide nanoparticles on the compressive strength and structure of self-compacting concrete. Magazine of Concrete Research, 64(1), 71-82. doi:10.1680/macr.10.00106.

Ouyang, X., Yu, L., Wang, L., Xu, S., Ma, Y., & Fu, J. (2022). Surface properties of ceramic waste powder and its effect on the rheology, hydration and strength development of cement paste. Journal of Building Engineering, 61, 105253. doi:10.1016/j.jobe.2022.105253.

Hu, C., Han, Y., Gao, Y., Zhang, Y., & Li, Z. (2014). Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Materials Characterization, 95, 129-139. doi:10.1016/j.matchar.2014.06.012.

Kunther, W., Ferreiro, S., & Skibsted, J. (2017). Influence of the Ca/Si ratio on the compressive strength of cementitious calcium-silicate-hydrate binders. Journal of Materials Chemistry A, 5(33), 17401–17412. doi:10.1039/c7ta06104h.

Elyasigorji, F., Farajiani, F., Hajipour Manjili, M., Lin, Q., Elyasigorji, S., Farhangi, V., & Tabatabai, H. (2023). Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13(11). doi:10.3390/buildings13112789.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 luma Abdul Ghani Zghair

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message