Natural Rubber Latex-Modified Concrete with Bottom Ash for Sustainable Rigid Pavements
Abstract
Doi: 10.28991/CEJ-2024-010-08-05
Full Text: PDF
Keywords
References
Delatte, N. (2018). Concrete Pavement Design, Construction, and Performance. CRC Press, London, United Kingdom. doi:10.1201/9781482288483.
Huang, Y.H. (2004) Pavement Analysis and Design. Pearson, London, United Kingdom.
Griffiths, S., Sovacool, B. K., Furszyfer Del Rio, D. D., Foley, A. M., Bazilian, M. D., Kim, J., & Uratani, J. M. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291. doi:10.1016/j.rser.2023.113291.
Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194–216. doi:10.1016/j.ijsbe.2013.05.001.
Singh, M., & Siddique, R. (2014). Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand. Construction and Building Materials, 68, 39–48. doi:10.1016/j.conbuildmat.2014.06.034.
Andrade, L. B., Rocha, J. C., & Cheriaf, M. (2007). Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Management, 27(9), 1190–1199. doi:10.1016/j.wasman.2006.07.020.
Bai, Y., Darcy, F., & Basheer, P. A. M. (2005). Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Construction and Building Materials, 19(9), 691–697. doi:10.1016/j.conbuildmat.2005.02.021.
Ranapratap, P., & Padmanabham, K. (2016). Effect of Replacing Fine Aggregate with Bottom Ash in M40 Grade of Concrete with Opc-53S Cement. International Journal of Research in Engineering and Technology, 5(10), 59–62. doi:10.15623/ijret.2016.0510011.
Soman, K., Sasi, D., & Abubaker, K. A. (2014). Strength properties of concrete with partial replacement of sand by bottom ash. International Journal of Innovative Research in Advanced Engineering, 1(7), 2349–2163.
Yang, I. H., Park, J., Dinh Le, N., & Jung, S. (2020). Strength Properties of High-Strength Concrete Containing Coal Bottom Ash as a Replacement of Aggregates. Advances in Materials Science and Engineering, 2020, 1–12. doi:10.1155/2020/4246396.
Mousa, A. (2023). Utilization of coal bottom ash from thermal power plants as a cement replacement for building: A promising sustainable practice. Journal of Building Engineering, 74, 106885. doi:10.1016/j.jobe.2023.106885.
Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. doi:10.1016/j.resconrec.2012.12.006.
Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620–630. doi:10.1016/j.jclepro.2015.08.001.
Özkan, Ö., Yüksel, I., & Muratoǧlu, Ö. (2007). Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag. Waste Management, 27(2), 161–167. doi:10.1016/j.wasman.2006.01.006.
Yüksel, I., & Genç, A. (2007). Properties of concrete containing nonground ash and slag as fine aggregate. ACI Materials Journal, 104(4), 397–403. doi:10.14359/18829.
Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. doi:10.1016/j.conbuildmat.2017.03.151.
Kou, S. C., & Poon, C. S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 23(8), 2877–2886. doi:10.1016/j.conbuildmat.2009.02.009.
Kim, H. K., & Lee, H. K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and Building Materials, 25(2), 1115–1122. doi:10.1016/j.conbuildmat.2010.06.065.
Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. doi:10.1016/j.conbuildmat.2007.07.008.
Subash, S., Mini, K., & Ananthkumar, M. (2021). Incorporation of natural rubber latex as concrete admixtures for improved mechanical properties. Materials Today: Proceedings, 46, 4859–4862. doi:10.1016/j.matpr.2020.10.326.
Muhammad, B., & Ismail, M. (2012). Performance of natural rubber latex modified concrete in acidic and sulfated environments. Construction and Building Materials, 31, 129–134. doi:10.1016/j.conbuildmat.2011.12.099.
Tuffrey, J., Siwseng, P., Laksanakit, C., & Chusilp, N. (2024). Enhancing the performance of waste paper pulp-cement composites, through the incorporation of natural rubber latex: A sustainable approach for high-performance construction materials. Construction and Building Materials, 430, 136345. doi:10.1016/j.conbuildmat.2024.136345.
Yaowarat, T., Suddeepong, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Vichitcholchai, N., Arulrajah, A., & Chinkulkijniwat, A. (2021). Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 282, 122704. doi:10.1016/j.conbuildmat.2021.122704.
Suddeepong, A., Buritatum, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Horpibulsuk, J., & Arulrajah, A. (2022). Natural Rubber Latex–Modified Concrete Pavements: Evaluation and Design Approach. Journal of Materials in Civil Engineering, 34(9), 4022215. doi:10.1061/(asce)mt.1943-5533.0004364.
Samingthong, W., Hoy, M., Ro, B., Horpibulsuk, S., Yosthasaen, T., Suddeepong, A., Buritatum, A., Yaowarat, T., & Arulrajah, A. (2023). Natural Rubber Latex-Modified Concrete with PET and Crumb Rubber Aggregate Replacements for Sustainable Rigid Pavements. Sustainability (Switzerland), 15(19), 14147. doi:10.3390/su151914147.
ASTM C127-15. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate (Withdrawn 2024). ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131-06.
ASTM C128-22. (2004). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C39/39M-21. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
ASTM C78-09. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
DHS309/2544. (1996). Thailand Department of Highways, Standards for highway construction, DHS309/2544, Bangkok, Thailand. (In Thai).
Muhammad, B., Ismail, M., Bhutta, M. A. R., & Abdul-Majid, Z. (2012). Influence of non-hydrocarbon substances on the compressive strength of natural rubber latex-modified concrete. Construction and Building Materials, 27(1), 241–246. doi:10.1016/j.conbuildmat.2011.07.054.
Abdulmatin, A., Tangchirapat, W., & Jaturapitakkul, C. (2018). An investigation of bottom ash as a pozzolanic material. Construction and Building Materials, 186, 155–162. doi:10.1016/j.conbuildmat.2018.07.101.
Hashemi, S. S. G., Mahmud, H. Bin, Djobo, J. N. Y., Tan, C. G., Ang, B. C., & Ranjbar, N. (2018). Microstructural characterization and mechanical properties of bottom ash mortar. Journal of Cleaner Production, 170, 797–804. doi:10.1016/j.jclepro.2017.09.191.
Mandal, A. K., & Sinha, O. P. (2014). Review on Current Research Status on Bottom Ash: An Indian Prospective. Journal of The Institution of Engineers (India): Series A, 95(4), 277–297. doi:10.1007/s40030-014-0100-0.
Schaefer, R. J. (2010). Mechanical properties of rubber. Harris’ Shock and Vibration Handbook, 6, 33-1, McGraw Hill Education, New York, United States.
Loykaew, A., & Utara, S. (2020). Effect of acidic and sulfated environments on phase transformation, compressive strength and microstructure of natural rubber latex-modified cement pastes. Journal of Materials Research and Technology, 9(6), 15496–15512. doi:10.1016/j.jmrt.2020.11.016.
Sukmak, G., Sukmak, P., Horpibulsuk, S., Yaowarat, T., Kunchariyakun, K., Patarapaiboolchai, O., & Arulrajah, A. (2020). Physical and mechanical properties of natural rubber modified cement paste. Construction and Building Materials, 244, 118319. doi:10.1016/j.conbuildmat.2020.118319.
Elyasigorji, F., Farajiani, F., Hajipour Manjili, M., Lin, Q., Elyasigorji, S., Farhangi, V., & Tabatabai, H. (2023). Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13(11), 2789. doi:10.3390/buildings13112789.
An, J., Kim, J., & Nam, B. H. (2017). Investigation on impacts of municipal solid waste incineration bottom ash on cement hydration. ACI Materials Journal, 114(5), 701–711. doi:10.14359/51689712.
Olubajo, O., Osha, O., El-Nafaty, U., & Adamu, H. (2014). Effect of water-cement ratio on the mechanical properties of blended cement containing bottom ash and limestone. Civil and Environmental Research, 6(12), 1-9.
Gencel, O., Kazmi, S. M. S., Munir, M. J., Kaplan, G., Bayraktar, O. Y., Yarar, D. O., Karimipour, A., & Ahmad, M. R. (2021). Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and thermal performance of foam concrete: An experimental investigation. Construction and Building Materials, 306, 124887. doi:10.1016/j.conbuildmat.2021.124887.
DOI: 10.28991/CEJ-2024-010-08-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Karn Kantatham, Menglim Hoy, Sutamas Sansri, Suksun Horpibulsuk, Apichat Suddeepong, Apinun Buritatum, Teerasak Yaowarat, Bundan Ro, Veena Phunpeng
This work is licensed under a Creative Commons Attribution 4.0 International License.