Investigation of an Innovative Technique for R.C. Piles Reinforced by Geo-Synthetics Under Axial Load

Mona I. Badawi, Mahmuod Awwad, Mohab Roshdy, El-Sayed A. El-Kasaby

Abstract


The use of alternative reinforcement material to enhance the performance of the pile capacity has gained increasing interest in recent years. This study seeks to probe the improvement of the ultimate pile capacity, reduction the deformation, and the financial results of using alternative reinforcement material such as glass fiber-reinforced polymers (GFRP), geosynthetics geogrids, as well as a combination of geosynthetics geogrids and a central steel bar. Axial load investigations were conducted on circular piles with 150 mm diameter and 1050 mm height. The experimental results revealed an improvement in the axial capacity of up to 25.4% and an enhancement in performance represented in ductility. Furthermore, financial and weight comparisons showed a decrease in the cost by up to 15%. Moreover, a nonlinear finite element (FE) study with Abaqus software was employed to standardize the numerical outcomes with the laboratory findings. The FE analysis was also verified with the previous studies. The 3D nonlinear finite element numerical model performed showed convergence with and without representing the surrounding soil of the pile; thus, confirming the adequacy of the experimental setup adopted. Finally, a suggested theoretical equation is developed to evaluate the change in pile axial load capacity based on the use of different reinforcement materials. The application of the proposed theoretical equation provides further insight into the governing equation involving different reinforcing materials.

 

Doi: 10.28991/CEJ-2024-010-10-011

Full Text: PDF


Keywords


Geosynthetics Geogrids; GFPR; Piles; Axial Load; FEM.

References


Iskander, M. G., Hanna, S., & Stachula, A. (2001). Driveability of FRP Composite Piling. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 169–176. doi:10.1061/(asce)1090-0241(2001)127:2(169).

Iskander, M. G., & Stachula, A. (2002). Wave Equation Analyses of Fiber-Reinforced Polymer Composite Piling. Journal of Composites for Construction, 6(2), 88–96. doi:10.1061/(asce)1090-0268(2002)6:2(88).

Abdel-Karim, A. H., Khalil, G. I., Ewis, A. E., & Makhlouf, M. H. (2023). Impact of developed hybrid polypropylene fiber inclusion on the flexural performance of concrete beams reinforced with innovative hybrid bars. Construction and Building Materials, 409(134113). doi:10.1016/j.conbuildmat.2023.134113.

Sen, R., & Mullins, G. (2007). Application of FRP composites for underwater piles repair. Composites Part B: Engineering, 38(5–6), 751–758. doi:10.1016/j.compositesb.2006.07.011.

Zyka, K., & Mohajerani, A. (2016). Composite piles: A review. Construction and Building Materials, 107, 394–410. doi:10.1016/j.conbuildmat.2016.01.013.

Benmokrane, B., & Ali, A. H. (2019). Review and assessment of various theories for modeling durability of GFRP reinforcement for concrete structures. Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, CRC Press, Boca Raton, United States. doi:10.1201/9780429426506-273.

Ding, L., Seliem, H. M., Rizkalla, S. H., Wu, G., & Wu, Z. (2011). Behavior of concrete piles confined with CFRP grid. ACI Special Publication, 1(275), 189-205.

Fam, A., Pando, M., Filz, G., & Rizkalla, S. (2003). Precast piles for route 40 bridge in Virginia using concrete filled FRP tubes. PCI Journal, 48(3), 32–45. doi:10.15554/pcij.05012003.32.45.

Giraldo, J., & Rayhani, M. T. (2013). Influence of Fiber-Reinforced Polymers on Pile-Soil Interface Strength in Clays. Advances in Civil Engineering Materials, 2(1), 534–550. doi:10.1520/ACEM20120043.

Giraldo, J., & Rayhani, M. T. (2014). Load transfer of hollow Fiber-Reinforced Polymer (FRP) piles in soft clay. Transportation Geotechnics, 1(2), 63–73. doi:10.1016/j.trgeo.2014.03.002.

Gupta, P. K., & Verma, V. K. (2016). Study of concrete-filled unplasticized poly-vinyl chloride tubes in marine environment. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 230(2), 229–240. doi:10.1177/1475090214560448.

Hadi, M. N. S., & Youssef, J. (2016). Experimental Investigation of GFRP-Reinforced and GFRP-Encased Square Concrete Specimens under Axial and Eccentric Load, and Four-Point Bending Test. Journal of Composites for Construction, 20(5), 04013017–1. doi:10.1061/(asce)cc.1943-5614.0000675.

Iskander, M. G., & Hassan, M. (1998). State of the Practice Review in FRP Composite Piling. Journal of Composites for Construction, 2(3), 116–120. doi:10.1061/(asce)1090-0268(1998)2:3(116).

Suleiman, M. T., Ni, L., & Raich, A. (2014). Development of Pervious Concrete Pile Ground-Improvement Alternative and Behavior under Vertical Loading. Journal of Geotechnical and Geoenvironmental Engineering, 140(7), 04014035. doi:10.1061/(asce)gt.1943-5606.0001135.

Wang, W., Sheikh, M. N., & Hadi, M. N. S. (2015). Axial compressive behaviour of concrete confined with polymer grid. Materials and Structures, 49(9), 3893–3908. doi:10.1617/s11527-015-0761-9.

Giraldo Velez, J. D. (2013). Experimental study of Hollow Fibre Reinforced Polymer Piles in soft clay. PhD Thesis, Carleton University, Ottawa, Canada.

Guades, E., Aravinthan, T., Islam, M., & Manalo, A. (2012). A review on the driving performance of FRP composite piles. Composite Structures, 94(6), 1932–1942. doi:10.1016/j.compstruct.2012.02.004.

Pando, A. M., Ealy, C.D., Flitz, M. G., Lesko, J. J., & Hoppe, E.J. (2006). A Laboratory and Field Study of Composite Piles for Bridge Substructures. FHWA-HRT04-043, Federal Highway Administration, Washington, United States.

Zhang, H., & Hadi, M. N. S. (2019). Geogrid-confined pervious geopolymer concrete piles with FRP-PVC-confined concrete core: Concept and behaviour. Construction and Building Materials, 211, 12–25. doi:10.1016/j.conbuildmat.2019.03.231.

AlAjarmeh, O. S., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2019). Axial performance of hollow concrete columns reinforced with GFRP composite bars with different reinforcement ratios. Composite Structures, 213(2), 153–164. doi:10.1016/j.compstruct.2019.01.096.

Pham, T. A., Tran, Q.-A., Villard, P., & Dias, D. (2023). Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Embankments Considering Integrated Soil-Structure Interactions. Geotechnical and Geological Engineering, 42(1), 185–206. doi:10.1007/s10706-023-02564-9.

Alsirawan, R., Alnmr, A., & Koch, E. (2023). Experimental and Numerical Investigation of Geosynthetic-Reinforced Pile-Supported Embankments for Loose Sandy Soils. Buildings, 13(9). doi:10.3390/buildings13092179.

Alsirawan, R., Koch, E., & Alnmr, A. (2023). Proposed Method for the Design of Geosynthetic-Reinforced Pile-Supported (GRPS) Embankments. Sustainability, 15(7), 6196. doi:10.3390/su15076196.

Alnmr, A., & Alsirawan, R. (2024). Numerical Study of the Effect of the Shape and Area of Shallow Foundations on the Bearing Capacity of Sandy Soils. Acta Polytechnica Hungarica, 21(1), 103–120. doi:10.12700/APH.21.1.2024.1.7.

Pham, T. A. (2020). Analysis of geosynthetic-reinforced pile-supported embankment with soil-structure interaction models. Computers and Geotechnics, 121, 103438. doi:10.1016/j.compgeo.2020.103438.

ACI 318M-11. (2011). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Michigan, United States.

Vignjevic, R., Djordjevic, N., Vuyst, T. De, & Gemkow, S. (2018). Modelling of strain softening materials based on equivalent damage force. Computer Methods in Applied Mechanics and Engineering, 335(12), 52–68. doi:10.1016/j.cma.2018.01.049.

ABAQUS. (2013). Abaqus Documentation User's Guide. Dassault Systèmes, Vélizy-Villacoublay, France.

Zainal, S. M. I. S., Hejazi, F., Aziz, F. N. A. Abd., & Jaafar, M. S. (2020). Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension. Crystals, 10(10), 885. doi:10.3390/cryst10100885.

Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990. doi:10.1061/jsdeag.0002957.

ACI 440.1R-15. (2015). Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Michigan, United States.

ECP-201. (2012) Egyptian Code of Practice for Calculation of Loads and Forces in Structures and Buildings. National Housing and Building Research Center, Cairo, Egypt.

Hadhood, A., Mohamed, H. M., Ghrib, F., & Benmokrane, B. (2017). Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads. Composites Part B: Engineering, 114(5), 223–236. doi:10.1016/j.compositesb.2017.01.063.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mahmuod Awad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message