Comparative Evaluation of Compressive Strength in Earth Blocks Enhanced with Natural Fibers
Downloads
Doi: 10.28991/CEJ-2024-010-10-013
Full Text: PDF
[2] Belaí¯d, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resources, Conservation and Recycling Advances, 15(3), 2–3. doi:10.1016/j.rcradv.2022.200084.
[3] Asia-Pacific Office. (2009). Poverty housing - In the developing nations of the Pacific islands. Habitat for Humanity, Asia-Pacific Office, Bangkok, Thailand. Available online: https://reliefweb.int/report/world/poverty-housing-developing-nations-pacific-islands (accessed on September 2024).
[4] Mostafa, M., & Uddin, N. (2015). Effect of banana fibers on the compressive and flexural strength of compressed earth blocks. Buildings, 5(1), 282–296. doi:10.3390/buildings5010282.
[5] Danso, H., Martinson, D. B., Ali, M., & Williams, J. B. (2015). Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Construction and Building Materials, 101(1), 797–809. doi:10.1016/j.conbuildmat.2015.10.069.
[6] Thanushan, K., Yogananth, Y., Sangeeth, P., Coonghe, J. G., & Sathiparan, N. (2021). Strength and Durability Characteristics of Coconut Fibre Reinforced Earth Cement Blocks. Journal of Natural Fibers, 18(6), 773–788. doi:10.1080/15440478.2019.1652220.
[7] Kasinikota, P., & Tripura, D. D. (2024). Shear capacity of interlocking compressed stabilized earth block masonry panels. European Journal of Environmental and Civil Engineering, 1–27. doi:10.1080/19648189.2024.2372611.
[8] Bourki, A. El, Koutous, A., & Hilali, E. (2023). Fiber-reinforced Rammed Earth: State of the Art and Perspectives. Civil Engineering and Architecture, 11(5), 3162–3174. doi:10.13189/cea.2023.110826.
[9] Paul, S., Islam, M. S., & Chakma, N. (2024). Effectiveness of areca fiber and cement on the engineering characteristics of compressed stabilized earth blocks. Construction and Building Materials, 427, 136290. doi:10.1016/j.conbuildmat.2024.136290.
[10] Paul, S., Islam, M. S., & Hossain, M. I. (2023). Suitability of Vetiver straw fibers in improving the engineering characteristics of compressed earth blocks. Construction and Building Materials, 409, 134224. doi:10.1016/j.conbuildmat.2023.134224.
[11] Kolawole, F. O., Olugbemi, O. M., Kolawole, S. K., Owa, A. F., & Ajayi, E. S. (2017). Fracture Toughness and Strength of Bamboo-Fiber Reinforced Laterite as Building Block Material. Universal Journal of Materials Science, 5(3), 64–72. doi:10.13189/ujms.2017.050302.
[12] Rudresh, A. N., & Girish, P. (2020). Stabilized Rammed Earth Construction Using Natural Fibers. International Journal of Engineering Development and Research, 8(3), 37.
[13] Mbereyaho, L., Mutabaruka, J. de D., Gershome, A. G., Ineza, A., & Ngirabatware, E. (2019). Strength, sustainability and affordability of bamboo and mud bricks as materials used in local construction. Rwanda Journal of Engineering, Science, Technology and Environment, 2(1), 1-13. doi:10.4314/rjeste.v2i1.4.
[14] Bala, A., & Gupta, S. (2023). Engineered bamboo and bamboo-reinforced concrete elements as sustainable building materials: A review. Construction and Building Materials, 394, 132116. doi:10.1016/j.conbuildmat.2023.132116.
[15] Raavi, S. S. D., & Tripura, D. D. (2023). Compressive and shear behavior of cement stabilized rammed earth wallettes reinforced with coir, bamboo splints and steel bars. Structures, 53, 1389–1401. doi:10.1016/j.istruc.2023.05.005.
[16] Ahmad, J., Zhou, Z., & Deifalla, A. F. (2023). Structural properties of concrete reinforced with bamboo fibers: a review. Journal of Materials Research and Technology, 24, 844–865. doi:10.1016/j.jmrt.2023.03.038.
[17] Subramanian, G. K. M., Balasubramanian, M., & Jeya Kumar, A. A. (2022). A Review on the Mechanical Properties of Natural Fiber Reinforced Compressed Earth Blocks. Journal of Natural Fibers, 19(14), 7687–7701. doi:10.1080/15440478.2021.1958405.
[18] Niazi, Z., Khanna, P., Gupta, S., & Sirohi, R. (2020). Stabilized Compressed Earth Block (SCEB). Development Alternatives, Development Alternatives Group, New Delhi, India. Available online: https://www.devalt.org/images/L2_ProjectPdfs/ STABILIZED%20COMPRESSED%20EARTH%20BLOCK%20(SCEB)%20-%20Production%20and%20Construction%20Guide.pdf?Oid=319 (accessed on September 2024).
[19] Riza, F. V., Rahman, I. A., Mujahid, A., & Zaidi, A. (2010). A brief review of Compressed Stabilized Earth Brick (CSEB). CSSR 2010 - 2010 International Conference on Science and Social Research, 999–1004. doi:10.1109/CSSR.2010.5773936.
[20] Nagaraja, A., Mohan, M., & Bhaskaran, B. (2018). Study on compressed stabilised earth blocks using ALGIPLAST admixtures. International Journal of Applied Engineering and Management Letters, 2(2), 1-7.
[21] Waziri, B. S., & Lawan, Z. A. (2013). Properties of compressed stabilized earth blocks (CSEB) for low-cost housing construction: a preliminary investigation. International Journal of Sustainable Construction Engineering and Technology, 4(2), 39-46.
[22] Namango, S. S., & Madara, D. S. (2014). Compressed earth blocks reinforced with sisal fibres. Journal of Agricultural Pure Applied Science and Technology, 19, 10-22.
[23] Dabakuyo, I., Mutuku, R. N. N., & Onchiri, R. O. (2022). Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer. Civil Engineering Journal (Iran), 8(4), 780–795. doi:10.28991/CEJ-2022-08-04-012.
[24] Bailly, G. C., El Mendili, Y., Konin, A., & Khoury, E. (2024). Advancing Earth-Based Construction: A Comprehensive Review of Stabilization and Reinforcement Techniques for Adobe and Compressed Earth Blocks. Eng., 5(2), 750–783. doi:10.3390/eng5020041.
[25] SPC. (2012). A Reference Manual for Utilising Soil. Secretariat of the Pacific Community (SPC), Nabua, Fiji. Available online: https://pafpnet.spc.int/attachments/article/170/Manual%20for%20Utilising%20Soil.pdf (accessed on September 2024).
[26] Google Maps (2024). Google Maps. Google, California, United States. Available online: https://www.google.com/maps/@-18.1411688,178.4550501,363m/data=!3m1!1e3?entry=ttu (accessed on September 2024).
[27] Raj, S., Mohammad, S., Das, R., & Saha, S. (2017). Coconut fibre reinforced cement stabilized rammed earth blocks. World Journal of Engineering, 14(3), 208–216. doi:10.1108/WJE-10-2016-0101.
[28] Tello, J., Cabrera, M., Rodríguez, J., & Eyzaguirre, C. (2022). Compressed Earth Blocks for Rural Housing in Seismic Zones Using Bagasse Fibers from Sugarcane. Key Engineering Materials, 922, 177–182. doi:10.4028/p-tsg594.
[29] Zhang, L., Gustavsen, A., Jelle, B. P., Yang, L., Gao, T., & Wang, Y. (2017). Thermal conductivity of cement stabilized earth blocks. Construction and Building Materials, 151, 504–511. doi:10.1016/j.conbuildmat.2017.06.047.
[30] Minke, G. (2012). Building with Bamboo: Design and Technology of a Sustainable Architecture. Birkhäuser, Basel, Switzerland.
[31] Li, H., Li, H., Jiang, N., Zhang, W., & Zhao, G. (2021). Experimental Research on Compressive Performance of Modified Rammed Soil Based on Highland Barley Straw Fibers and Rubbles. IOP Conference Series: Earth and Environmental Science, 706(1). doi:10.1088/1755-1315/706/1/012033.
[32] Liu, L., Yao, Y., Zhang, L., & Wang, X. (2022). Study on the mechanical properties of modified rammed earth and the correlation of influencing factors. Journal of Cleaner Production, 374, 134042. doi:10.1016/j.jclepro.2022.134042.
[33] Corbin, A., & Augarde, C. (2014). Fracture Energy of Stabilised Rammed Earth. Procedia Materials Science, 3, 1675–1680. doi:10.1016/j.mspro.2014.06.270.
[34] Masuka, S., Gwenzi, W., & Rukuni, T. (2018). Development, engineering properties and potential applications of unfired earth bricks reinforced by coal fly ash, lime and wood aggregates. Journal of Building Engineering, 18, 312–320. doi:10.1016/j.jobe.2018.03.010.
[35] Touré, P. M., Sambou, V., Faye, M., Thiam, A., Adj, M., & Azilinon, D. (2017). Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). Journal of Building Engineering, 13, 266–271. doi:10.1016/j.jobe.2017.08.012.
[36] Dao, K., Ouedraogo, M., Millogo, Y., Aubert, J. E., & Gomina, M. (2018). Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Construction and Building Materials, 158, 84–96. doi:10.1016/j.conbuildmat.2017.10.001.
[37] Zhang, W., Wang, C., Gu, S., Yu, H., Cheng, H., & Wang, G. (2021). Physical-mechanical properties of bamboo fiber composites using filament winding. Polymers, 13(17), 2913. doi:10.3390/polym13172913.
[38] Chen, H., Yu, Y., Zhong, T., Wu, Y., Li, Y., Wu, Z., & Fei, B. (2017). Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose, 24(1), 333–347. doi:10.1007/s10570-016-1116-6.
[39] Osorio, L., Trujillo, E., Lens, F., Ivens, J., Verpoest, I., & Van Vuure, A. W. (2018). In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites, 37(17), 1099–1113. doi:10.1177/0731684418783055.
[40] Widnyana, A., Rian, I. G., Surata, I. W., & Nindhia, T. G. T. (2020). Tensile Properties of coconut coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer. Materials Today: Proceedings, 22(2), 300–305. doi:10.1016/j.matpr.2019.08.155.
[41] Sri Bhanupratap Rathod, R., & Venkatarama Reddy, B. V. (2021). Strength and stress–strain characteristics of fibre reinforced cement stabilised rammed earth. Materials and Structures, 54(2). doi:10.1617/s11527-021-01640-x.
[42] B.O .Ugwuishiwu, B. . . U., B.O. Mama, B. O. M., & N. M Okoye, N. M. O. (2012). Effects of Natural Fiber Reinforcement on Water Absorption of Compressed Stabilized Earth Blocks. International Journal of Scientific Research, 2(11), 165–167. doi:10.15373/22778179/nov2013/54.
[43] Raavi, S.S.D., & Tripura, D.D. (2020). Predicting and evaluating the engineering properties of unstabilized and cement stabilized fibre reinforced rammed earth blocks. Construction and Building Materials, 262, 120845. doi:10.1016/j.conbuildmat.2020.120845.
[44] Sujatha, E. R., Mahalakshmi, S., & Kannan, G. (2023). Potential of fibre reinforced and cement stabilized fibre reinforced soil blocks as sustainable building units. Journal of Building Engineering, 78, 107733. doi:10.1016/j.jobe.2023.107733.
[45] DZ 4298. (2024). Materials and construction for earth buildings. Standards New Zealand, Wellington, New Zealand. Available online: https://consultations.standards.govt.nz/draft-standards/nzs-4298-materials-and-construction-for-earth-buil/user_uploads/dz-4298_pc-draft-12-april-2024__1.pdf (accessed on September 2024).
[46] Walker, P. (2002). The Australian earth building handbook. The Australian Earth Building Handbook. SAI Global Limited, Sydney, Australia.
[47] IS 2110. (1980). Code of practice for in-situ construction of walls in buildings with soil-cement. Bureau of Indian Standards, Manak Bhawan, New Delhi, India.
[48] Mir Concrete Block. (2022). Compressive Strength of Concrete Block: Everything You Should Know. Mir Concrete Block, Dhaka, Bangladesh.
[49] Parsekian, G. A., Christoforo, A. L., Mazzú, A. D. E., & Dalfré, G. M. (2021). Humidity and specimen preparation procedure: influence on compressive strength of concrete blocks. Revista IBRACON de Estruturas e Materiais, 14(2), 14210. doi:10.1590/S1983-41952021000200010.
[50] Paul, S., Islam, M. S., & Elahi, T. E. (2023). Potential of waste rice husk ash and cement in making compressed stabilized earth blocks: Strength, durability and life cycle assessment. Journal of Building Engineering, 73, 106727. doi:10.1016/j.jobe.2023.106727.
[51] Odongo, E. W. (2019). Acceptance criteria of alternative building materials and technologies for walling: a case study of Nairobi City County. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.