Modified Asphalt Mixtures Incorporating Pulverized Recycled Rubber and Recycled Asphalt Pavement
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-02
Full Text: PDF
Cubas, M., Correa, E., Benavides, W., Suclupe, R., & Arriola, G. (2025). Modified Asphalt Mixtures Incorporating Pulverized Recycled Rubber and Recycled Asphalt Pavement. Civil Engineering Journal, 11(2), 420–436. https://doi.org/10.28991/CEJ-2025-011-02-02
[1] Praticò, F. G., Perri, G., De Rose, M., & Vaiana, R. (2023). Comparing bio-binders, rubberised asphalts, and traditional pavement technologies. Construction and Building Materials, 400. doi:10.1016/j.conbuildmat.2023.132813.
[2] Germin-Aizac, J., Maitre, A., Balducci, F., Montlevier, S., Marques, M., Tribouiller, J., Demeilliers, C., & Persoons, R. (2023). Bitumen fumes and PAHs in asphalt road paving: Emission characteristics, determinants of exposure and environmental impact. Environmental Research, 228. doi:10.1016/j.envres.2023.115824.
[3] Villegas, L., Marín, N., Idrogo, C., Suclupe, R., López, A., & Arriola, G. (2024). Use of Foamed Asphalt and Foamed Bitumen for Recycled Asphalt Mixtures: A Review. Civil Engineering and Architecture, 12(2), 1104–1123. doi:10.13189/cea.2024.120232.
[4] Sharma, A., Rongmei Naga, G. R., Kumar, P., & Rai, P. (2022). Mix design, development, production and policies of recycled hot mix asphalt: A review. Journal of Traffic and Transportation Engineering, 9(5), 765–794. doi:10.1016/j.jtte.2022.06.004.
[5] Manjunatha, M., Seth, D., KVGD, B., & A, B. (2022). Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: A step towards sustainable approach. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01404.
[6] Arroyo, P., Herrera, R., Salazar, L., Giménez, Z., Martínez, J., & Calahorra, M. (2018). A new approach for integrating environmental, social and economic factors to evaluate asphalt mixtures with and without waste tires. Revista Ingenieria de Construccion, 33(3), 301–314. doi:10.4067/S0718-50732018000300301.
[7] Angelo, A. A., Sasai, K., & Kaito, K. (2023). Assessing Critical Road Sections: A Decision Matrix Approach Considering Safety and Pavement Condition. Sustainability (Switzerland), 15(9), 7244. doi:10.3390/su15097244.
[8] Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December 2021), 1–42. doi:10.1016/j.jreng.2021.12.002.
[9] Slebi-Acevedo, C. J., Lastra-González, P., Castro-Fresno, D., & Vega-Zamanillo, í. (2022). Experimental evaluation and recyclability potential of asphalt concrete mixtures with polyacrylonitrile fibers. Construction and Building Materials, 317. doi:10.1016/j.conbuildmat.2021.125829.
[10] Guduru, G., Tavva, T. L., & Kuna, K. (2022). Estimation of Reclaimed Asphalt Pavement (RAP) characteristics using simple indicative tests. Road Materials and Pavement Design, 23(4), 822–848. doi:10.1080/14680629.2020.1845785.
[11] Kocak, S. (2024). Cost-Effective Use of Reclaimed Asphalt Mixtures with Various Rubber Modification Technologies for Pavement Maintenance Applications. Journal of Materials in Civil Engineering, 36(4). doi:10.1061/jmcee7.mteng-17174.
[12] Fomento, M. de. (2007). Manual for the use of rubber in NFU in bituminous mixtures. Centro de Publicaciones. Manual Técnico, Centro de Estudios y Experimentación de Obras Públicas, Madrid, Spain. (In Spanish).
[13] Tan, E. H., Zahran, E. M. M., & Tan, S. J. (2022). The optimal use of crumb rubber in hot-mix asphalt by dry process: A laboratory investigation using Marshall mix design. Transportation Engineering, 10. doi:10.1016/j.treng.2022.100145.
[14] Zhao, Z., Wu, S., Xie, J., Yang, C., Wang, F., Li, N., Liu, Q., & Amirkhanian, S. (2024). Effect of direct addition of asphalt rubber pellets on mixing, performance and VOCs of asphalt mixtures. Construction and Building Materials, 411. doi:10.1016/j.conbuildmat.2023.134494.
[15] Ariza-Zabala, D. A., Sánchez-Mejía, C. D., & Carreño- García, K. (2022). Volumetric properties of hot asphalt mixtures with "MAPIA” natural asphalt and recycled rubber grain as mineral filler. Revista Ingenio, 19(1), 43–49. doi:10.22463/2011642x.3051.
[16] Hittini, W., Mourad, A. H. I., & Abu-Jdayil, B. (2021). Utilization of devulcanized waste rubber tire in development of heat insulation composite. Journal of Cleaner Production, 280. doi:10.1016/j.jclepro.2020.124492.
[17] Chegenizadeh, A., Shen, P. J., Arumdani, I. S., Budihardjo, M. A., & Nikraz, H. (2021). The addition of a high dosage of rubber to asphalt mixtures: The effects on rutting and fatigue. Sustainability (Switzerland), 13(17), 9718. doi:10.3390/su13179718.
[18] Kumar, H. V., & Rahul, B. G. (2020). Performance and Cost Analysis of Modified Bitumen Binder for Flexible Pavement. IOP Conference Series: Materials Science and Engineering, 912(6), 062050. doi:10.1088/1757-899X/912/6/062050.
[19] Zhuang, C. Y., Hao, Y., Ye, Y. L., & Guo, J. K. (2023). Research on strength formation mechanism and noise reduction characteristics of waste rubber powder micro-surfacing. Case Studies in Construction Materials, 19. doi:10.1016/j.cscm.2023.e02293.
[20] Sohail Jameel, M., Hassan Khan, A., ur Rehman, Z., & Akhtar Tarar, M. (2023). Evaluation of performance characteristics of asphalt mixtures modified with renewable oils and reclaimed asphalt pavement (RAP). Construction and Building Materials, 375. doi:10.1016/j.conbuildmat.2023.130925.
[21] Savarnya, A., Saboo, N., Das, A., Makowska, M., & Pellinen, T. (2022). Development of ternary binder mixing formulation for asphalt pavement recycling. International Journal of Pavement Engineering, 23(13), 4739–4747. doi:10.1080/10298436.2021.1975194.
[22] Zaumanis, M., Cavalli, M. C., & Poulikakos, L. D. (2020). Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. International Journal of Pavement Engineering, 21(4), 507–515. doi:10.1080/10298436.2018.1492133.
[23] Medam, T., Thushara, V. T., & Krishnan, J. M. (2024). Statistics-Based Design of Experimental Framework to Formulate Ternary RAP Binder Blends. Journal of Materials in Civil Engineering, 36(3), 04023638. doi:10.1061/jmcee7.mteng-16503.
[24] Mullapudi, R. S., Noojilla, S. L. A., & Kusam, S. R. (2020). Effect of initial damage on healing characteristics of bituminous mixtures containing reclaimed asphalt material (RAP). Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120808.
[25] Ismael, M. Q., & Khaled, T. T. (2019). Evaluation of Hot Mix Asphalt Containing Reclaimed Asphalt Pavement to Resist Moisture Damage. Journal of Engineering and Sustainable Development, 23(5), 117–136. doi:10.31272/jeasd.23.5.9.
[26] Al-Ghurabi, S. B., & Al-Humeidawi, B. H. (2021). Comparative evaluation for the effect of particles size of reclaimed asphalt pavement (RAP) on the properties of HMA. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012025.
[27] Maylle Paima, A., & Avila Tarma, P. E. (2023). Development of a mix design for soil stabilization with CSS-1h type asphalt emulsion and recycled asphalt pavement (RAP) based on the modified Marshall procedure. Infraestructura Vial, 25(44), 1–17. doi:10.15517/iv.v25i44.53441.
[28] Bocci, E., & Prosperi, E. (2023). Recyclability of reclaimed asphalt rubber pavement. Construction and Building Materials, 403. doi:10.1016/j.conbuildmat.2023.133040.
[29] Fan, Y., Chen, H., Yi, X., Xu, G., Cai, X., Zhou, Y., Huang, S., Wu, Y., Wang, H., Yang, J., & Huang, W. (2023). Cracking resistance evaluation of epoxy asphalt mixtures with 100% reclaimed asphalt pavement (RAP). Construction and Building Materials, 395. doi:10.1016/j.conbuildmat.2023.132320.
[30] Latifi, H., & Amini, N. (2020). Effect of aggregate type on moisture susceptibility of modified cold recycled mix asphalt: Evaluation by mechanical tests and surface free energy method. Frattura Ed Integrita Strutturale, 14(52), 211–229. doi:10.3221/IGF-ESIS.52.17.
[31] Rodríguez-Fernández, I., Tarpoudi Baheri, F., Cavalli, M. C., Poulikakos, L. D., & Bueno, M. (2020). Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Construction and Building Materials, 259. doi:10.1016/j.conbuildmat.2020.119662.
[32] Nanjegowda, V. H., & Biligiri, K. P. (2023). Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications. Resources, Conservation and Recycling, 192. doi:10.1016/j.resconrec.2023.106909.
[33] ASTM D2419-22. (2022). D2419-22 Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D2419-22.
[34] ASTM C1252-23. (2023). Standard Test Methods for uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading). ASTM International, Pennsylvania, United States. doi:10.1520/C1252-23.
[35] AASHTO T-330. (2007). Standard Method of Test for The Qualitative Detection of Harmful Clays of the Smectite Group in Aggregates Using Methylene Blue. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[36] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[37] ASTM D3744/D3744M-18. (2018).Standard Test Method for Aggregate Durability Index. ASTM International, Pennsylvania, United States. doi:10.1520/D3744_D3744M-18.
[38] MTC-E220. (2020). Adhesiveness of bituminous binders to fine aggregates (Riedel-Weber procedure), Ministry of Transport and Communications, Lima, Peru. (In Spanish).
[39] ASTM D 1888:1978. (1978). Methods of Test for Particulate and Dissolved Matter in Water. Aggregates. ASTM International, Pennsylvania, United States.
[40] ASTM C142/C142M-17. (2023). Standard Test Method for Clay Lumps and Friable Particles in Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0142_C0142M-17.
[41] ASTM C88-99a (2017). ASTM C88/C88M − 24: Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-99A.
[42] ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.
[43] AASHTO T 182-84. (2002). Standard Method of Test for Coating and Stripping of Bitumen-Aggregate Mixtures. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[44] ASTM D5821-13(2017). (2017). Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D4791-19.
[45] ASTM D5821 13. (2008). Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D5821-13R17.
[46] ASTM C127-24. (2024). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-24.
[47] ASTM D5/D5M-20. (2020). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005_D0005M-20.
[48] ASTM D113/D113M-17(2023)e1. (2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113_D0113M-17R23E01.
[49] ASTM D2170/D2170M-24. (2024). Standard Test Method for Kinematic Viscosity of Asphalts. ASTM International, Pennsylvania, United States. doi:10.1520/D2170_D2170M-24.
[50] ASTM D2042-22. (2015). Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene or Toluene. ASTM International, Pennsylvania, United States. doi:10.1520/D2042-22.
[51] ASTM D92-18 (2024). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[52] ASTM D70/D70M-21. (2021). Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070_D0070M-21.
[53] ASTM D36/D36M-14(2020). (2020). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036_D0036M-14R20.
[54] ASTM D2872-22. (2022). Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). ASTM International, Pennsylvania, United States. doi:10.1520/D2872-22.
[55] ASTM D5/D5M-20. (2020). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005_D0005M-20.
[56] ASTM D113-17.(2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-17.
[57] Cruz, K. O., Galeas Hurtado, S., & Guerrero Barragán, V. H. (2015). Obtaining Modified Asphalt with Rubber Powder from the Recycling of Automotive Tires. Revista Politécnica, 36(3), 1. (In Spanish).
[58] ASTM C136-06. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136-06.
[59] ASTM D1559-89. (2021). Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM International, Pennsylvania, United States.
[60] Al-Azawee, E. T., Qasim, Z. I., & Al-Dahawi, A. M. (2023). Evaluation of Mechanical and Durability Properties of Rubberized Hot Mix Asphalt. AIP Conference Proceedings, 2775(1), 060023. doi:10.1063/5.0140422.
[61] Martinez, G., Caicedo, B., González, D., Celis, L., Fuentes, L., & Torres, V. (2018). Thirteen Years of Continuous Development in Crumb Rubber Modified Asphalt Mixtures in Bogota: Achieving Pavement Sustainability. Revista Ingenieria de Construccion, 33(1), 41–50. doi:10.4067/s0718-50732018000100041.
[62] Olkeba, S. T., & Potdar, A. M. (2021). Effects of waste ceramic dust and butyl rubber on rheological properties of asphalt binder. ASEAN Engineering Journal, 11(2), 51–63. doi:10.11113/AEJ.V11.16678.
[63] Wang, C., Li, X., Zhu, S., Xie, W., & Sheng, J. (2020). Mix ratio optimization for rubber powder noise reduction micro-surfacing based on road performance analysis. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 42(3), 291–297. doi:10.13255/j.cnki.jusst.20190418003.
[64] Zhao, Z., Wu, S., Xie, J., Yang, C., Yang, X., Chen, S., & Liu, Q. (2023). Recycle of waste tire rubber powder in a novel asphalt rubber pellets for asphalt performance enhancement. Construction and Building Materials, 399. doi:10.1016/j.conbuildmat.2023.132572.
[65] Meng, Y., Gou, C., Zhao, Q., Qin, Y., Kong, W., & Fan, L. (2022). Study on multiple Damage-Healing properties and mechanism of laboratory simulated recycled asphalt binders. Construction and Building Materials, 346. doi:10.1016/j.conbuildmat.2022.128468.
[66] Leiva Villacorta, F., & Vargas Nordcbeck, A. (2018). Best practices for designing asphalt mixtures with reclaimed asphalt pavement (RAP). Infraestructura Vial, 19(33). doi:10.15517/iv.v19i33.32921. (In Spanish).
[67] Vigneswaran, S., Yun, J., Jeong, K. D., Lee, M. S., & Lee, S. J. (2023). Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders. Sustainability (Switzerland), 15(18), 13568. doi:10.3390/su151813568.
[68] Albayati, A., Al- Mosawe, H., Sukhija, M., & Naidu, A. N. P. (2023). Appraising the synergistic use of recycled asphalt pavement and recycled concrete aggregate for the production of sustainable asphalt concrete. Case Studies in Construction Materials, 19, e02237. doi:10.1016/j.cscm.2023.e02237.
[69] Bérubé, M. A., Lamothe, S., Bilodeau, K., & Carter, A. (2023). Laboratory Study of the Effects of the Mixer Type and Mixing Time on the Volumetric Properties and Performance of a HMA with 30 Percent Reclaimed Asphalt Pavement. Materials, 16(3), 1300. doi:10.3390/ma16031300.
[70] Gottumukkala, B., Mullapudi, R. S., Reddy, K. K., & Kusam, S. R. (2023). A Method for the Determination of Mixing Temperatures of Different Components of Recycled Hot Mix Asphalt Mixtures. International Journal of Pavement Research and Technology, 16(3), 606–620. doi:10.1007/s42947-022-00151-4.
[2] Germin-Aizac, J., Maitre, A., Balducci, F., Montlevier, S., Marques, M., Tribouiller, J., Demeilliers, C., & Persoons, R. (2023). Bitumen fumes and PAHs in asphalt road paving: Emission characteristics, determinants of exposure and environmental impact. Environmental Research, 228. doi:10.1016/j.envres.2023.115824.
[3] Villegas, L., Marín, N., Idrogo, C., Suclupe, R., López, A., & Arriola, G. (2024). Use of Foamed Asphalt and Foamed Bitumen for Recycled Asphalt Mixtures: A Review. Civil Engineering and Architecture, 12(2), 1104–1123. doi:10.13189/cea.2024.120232.
[4] Sharma, A., Rongmei Naga, G. R., Kumar, P., & Rai, P. (2022). Mix design, development, production and policies of recycled hot mix asphalt: A review. Journal of Traffic and Transportation Engineering, 9(5), 765–794. doi:10.1016/j.jtte.2022.06.004.
[5] Manjunatha, M., Seth, D., KVGD, B., & A, B. (2022). Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: A step towards sustainable approach. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01404.
[6] Arroyo, P., Herrera, R., Salazar, L., Giménez, Z., Martínez, J., & Calahorra, M. (2018). A new approach for integrating environmental, social and economic factors to evaluate asphalt mixtures with and without waste tires. Revista Ingenieria de Construccion, 33(3), 301–314. doi:10.4067/S0718-50732018000300301.
[7] Angelo, A. A., Sasai, K., & Kaito, K. (2023). Assessing Critical Road Sections: A Decision Matrix Approach Considering Safety and Pavement Condition. Sustainability (Switzerland), 15(9), 7244. doi:10.3390/su15097244.
[8] Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December 2021), 1–42. doi:10.1016/j.jreng.2021.12.002.
[9] Slebi-Acevedo, C. J., Lastra-González, P., Castro-Fresno, D., & Vega-Zamanillo, í. (2022). Experimental evaluation and recyclability potential of asphalt concrete mixtures with polyacrylonitrile fibers. Construction and Building Materials, 317. doi:10.1016/j.conbuildmat.2021.125829.
[10] Guduru, G., Tavva, T. L., & Kuna, K. (2022). Estimation of Reclaimed Asphalt Pavement (RAP) characteristics using simple indicative tests. Road Materials and Pavement Design, 23(4), 822–848. doi:10.1080/14680629.2020.1845785.
[11] Kocak, S. (2024). Cost-Effective Use of Reclaimed Asphalt Mixtures with Various Rubber Modification Technologies for Pavement Maintenance Applications. Journal of Materials in Civil Engineering, 36(4). doi:10.1061/jmcee7.mteng-17174.
[12] Fomento, M. de. (2007). Manual for the use of rubber in NFU in bituminous mixtures. Centro de Publicaciones. Manual Técnico, Centro de Estudios y Experimentación de Obras Públicas, Madrid, Spain. (In Spanish).
[13] Tan, E. H., Zahran, E. M. M., & Tan, S. J. (2022). The optimal use of crumb rubber in hot-mix asphalt by dry process: A laboratory investigation using Marshall mix design. Transportation Engineering, 10. doi:10.1016/j.treng.2022.100145.
[14] Zhao, Z., Wu, S., Xie, J., Yang, C., Wang, F., Li, N., Liu, Q., & Amirkhanian, S. (2024). Effect of direct addition of asphalt rubber pellets on mixing, performance and VOCs of asphalt mixtures. Construction and Building Materials, 411. doi:10.1016/j.conbuildmat.2023.134494.
[15] Ariza-Zabala, D. A., Sánchez-Mejía, C. D., & Carreño- García, K. (2022). Volumetric properties of hot asphalt mixtures with "MAPIA” natural asphalt and recycled rubber grain as mineral filler. Revista Ingenio, 19(1), 43–49. doi:10.22463/2011642x.3051.
[16] Hittini, W., Mourad, A. H. I., & Abu-Jdayil, B. (2021). Utilization of devulcanized waste rubber tire in development of heat insulation composite. Journal of Cleaner Production, 280. doi:10.1016/j.jclepro.2020.124492.
[17] Chegenizadeh, A., Shen, P. J., Arumdani, I. S., Budihardjo, M. A., & Nikraz, H. (2021). The addition of a high dosage of rubber to asphalt mixtures: The effects on rutting and fatigue. Sustainability (Switzerland), 13(17), 9718. doi:10.3390/su13179718.
[18] Kumar, H. V., & Rahul, B. G. (2020). Performance and Cost Analysis of Modified Bitumen Binder for Flexible Pavement. IOP Conference Series: Materials Science and Engineering, 912(6), 062050. doi:10.1088/1757-899X/912/6/062050.
[19] Zhuang, C. Y., Hao, Y., Ye, Y. L., & Guo, J. K. (2023). Research on strength formation mechanism and noise reduction characteristics of waste rubber powder micro-surfacing. Case Studies in Construction Materials, 19. doi:10.1016/j.cscm.2023.e02293.
[20] Sohail Jameel, M., Hassan Khan, A., ur Rehman, Z., & Akhtar Tarar, M. (2023). Evaluation of performance characteristics of asphalt mixtures modified with renewable oils and reclaimed asphalt pavement (RAP). Construction and Building Materials, 375. doi:10.1016/j.conbuildmat.2023.130925.
[21] Savarnya, A., Saboo, N., Das, A., Makowska, M., & Pellinen, T. (2022). Development of ternary binder mixing formulation for asphalt pavement recycling. International Journal of Pavement Engineering, 23(13), 4739–4747. doi:10.1080/10298436.2021.1975194.
[22] Zaumanis, M., Cavalli, M. C., & Poulikakos, L. D. (2020). Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. International Journal of Pavement Engineering, 21(4), 507–515. doi:10.1080/10298436.2018.1492133.
[23] Medam, T., Thushara, V. T., & Krishnan, J. M. (2024). Statistics-Based Design of Experimental Framework to Formulate Ternary RAP Binder Blends. Journal of Materials in Civil Engineering, 36(3), 04023638. doi:10.1061/jmcee7.mteng-16503.
[24] Mullapudi, R. S., Noojilla, S. L. A., & Kusam, S. R. (2020). Effect of initial damage on healing characteristics of bituminous mixtures containing reclaimed asphalt material (RAP). Construction and Building Materials, 262. doi:10.1016/j.conbuildmat.2020.120808.
[25] Ismael, M. Q., & Khaled, T. T. (2019). Evaluation of Hot Mix Asphalt Containing Reclaimed Asphalt Pavement to Resist Moisture Damage. Journal of Engineering and Sustainable Development, 23(5), 117–136. doi:10.31272/jeasd.23.5.9.
[26] Al-Ghurabi, S. B., & Al-Humeidawi, B. H. (2021). Comparative evaluation for the effect of particles size of reclaimed asphalt pavement (RAP) on the properties of HMA. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012025.
[27] Maylle Paima, A., & Avila Tarma, P. E. (2023). Development of a mix design for soil stabilization with CSS-1h type asphalt emulsion and recycled asphalt pavement (RAP) based on the modified Marshall procedure. Infraestructura Vial, 25(44), 1–17. doi:10.15517/iv.v25i44.53441.
[28] Bocci, E., & Prosperi, E. (2023). Recyclability of reclaimed asphalt rubber pavement. Construction and Building Materials, 403. doi:10.1016/j.conbuildmat.2023.133040.
[29] Fan, Y., Chen, H., Yi, X., Xu, G., Cai, X., Zhou, Y., Huang, S., Wu, Y., Wang, H., Yang, J., & Huang, W. (2023). Cracking resistance evaluation of epoxy asphalt mixtures with 100% reclaimed asphalt pavement (RAP). Construction and Building Materials, 395. doi:10.1016/j.conbuildmat.2023.132320.
[30] Latifi, H., & Amini, N. (2020). Effect of aggregate type on moisture susceptibility of modified cold recycled mix asphalt: Evaluation by mechanical tests and surface free energy method. Frattura Ed Integrita Strutturale, 14(52), 211–229. doi:10.3221/IGF-ESIS.52.17.
[31] Rodríguez-Fernández, I., Tarpoudi Baheri, F., Cavalli, M. C., Poulikakos, L. D., & Bueno, M. (2020). Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Construction and Building Materials, 259. doi:10.1016/j.conbuildmat.2020.119662.
[32] Nanjegowda, V. H., & Biligiri, K. P. (2023). Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications. Resources, Conservation and Recycling, 192. doi:10.1016/j.resconrec.2023.106909.
[33] ASTM D2419-22. (2022). D2419-22 Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D2419-22.
[34] ASTM C1252-23. (2023). Standard Test Methods for uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading). ASTM International, Pennsylvania, United States. doi:10.1520/C1252-23.
[35] AASHTO T-330. (2007). Standard Method of Test for The Qualitative Detection of Harmful Clays of the Smectite Group in Aggregates Using Methylene Blue. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[36] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[37] ASTM D3744/D3744M-18. (2018).Standard Test Method for Aggregate Durability Index. ASTM International, Pennsylvania, United States. doi:10.1520/D3744_D3744M-18.
[38] MTC-E220. (2020). Adhesiveness of bituminous binders to fine aggregates (Riedel-Weber procedure), Ministry of Transport and Communications, Lima, Peru. (In Spanish).
[39] ASTM D 1888:1978. (1978). Methods of Test for Particulate and Dissolved Matter in Water. Aggregates. ASTM International, Pennsylvania, United States.
[40] ASTM C142/C142M-17. (2023). Standard Test Method for Clay Lumps and Friable Particles in Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0142_C0142M-17.
[41] ASTM C88-99a (2017). ASTM C88/C88M − 24: Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-99A.
[42] ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.
[43] AASHTO T 182-84. (2002). Standard Method of Test for Coating and Stripping of Bitumen-Aggregate Mixtures. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[44] ASTM D5821-13(2017). (2017). Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D4791-19.
[45] ASTM D5821 13. (2008). Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D5821-13R17.
[46] ASTM C127-24. (2024). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-24.
[47] ASTM D5/D5M-20. (2020). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005_D0005M-20.
[48] ASTM D113/D113M-17(2023)e1. (2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113_D0113M-17R23E01.
[49] ASTM D2170/D2170M-24. (2024). Standard Test Method for Kinematic Viscosity of Asphalts. ASTM International, Pennsylvania, United States. doi:10.1520/D2170_D2170M-24.
[50] ASTM D2042-22. (2015). Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene or Toluene. ASTM International, Pennsylvania, United States. doi:10.1520/D2042-22.
[51] ASTM D92-18 (2024). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.
[52] ASTM D70/D70M-21. (2021). Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070_D0070M-21.
[53] ASTM D36/D36M-14(2020). (2020). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036_D0036M-14R20.
[54] ASTM D2872-22. (2022). Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). ASTM International, Pennsylvania, United States. doi:10.1520/D2872-22.
[55] ASTM D5/D5M-20. (2020). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005_D0005M-20.
[56] ASTM D113-17.(2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-17.
[57] Cruz, K. O., Galeas Hurtado, S., & Guerrero Barragán, V. H. (2015). Obtaining Modified Asphalt with Rubber Powder from the Recycling of Automotive Tires. Revista Politécnica, 36(3), 1. (In Spanish).
[58] ASTM C136-06. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136-06.
[59] ASTM D1559-89. (2021). Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM International, Pennsylvania, United States.
[60] Al-Azawee, E. T., Qasim, Z. I., & Al-Dahawi, A. M. (2023). Evaluation of Mechanical and Durability Properties of Rubberized Hot Mix Asphalt. AIP Conference Proceedings, 2775(1), 060023. doi:10.1063/5.0140422.
[61] Martinez, G., Caicedo, B., González, D., Celis, L., Fuentes, L., & Torres, V. (2018). Thirteen Years of Continuous Development in Crumb Rubber Modified Asphalt Mixtures in Bogota: Achieving Pavement Sustainability. Revista Ingenieria de Construccion, 33(1), 41–50. doi:10.4067/s0718-50732018000100041.
[62] Olkeba, S. T., & Potdar, A. M. (2021). Effects of waste ceramic dust and butyl rubber on rheological properties of asphalt binder. ASEAN Engineering Journal, 11(2), 51–63. doi:10.11113/AEJ.V11.16678.
[63] Wang, C., Li, X., Zhu, S., Xie, W., & Sheng, J. (2020). Mix ratio optimization for rubber powder noise reduction micro-surfacing based on road performance analysis. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 42(3), 291–297. doi:10.13255/j.cnki.jusst.20190418003.
[64] Zhao, Z., Wu, S., Xie, J., Yang, C., Yang, X., Chen, S., & Liu, Q. (2023). Recycle of waste tire rubber powder in a novel asphalt rubber pellets for asphalt performance enhancement. Construction and Building Materials, 399. doi:10.1016/j.conbuildmat.2023.132572.
[65] Meng, Y., Gou, C., Zhao, Q., Qin, Y., Kong, W., & Fan, L. (2022). Study on multiple Damage-Healing properties and mechanism of laboratory simulated recycled asphalt binders. Construction and Building Materials, 346. doi:10.1016/j.conbuildmat.2022.128468.
[66] Leiva Villacorta, F., & Vargas Nordcbeck, A. (2018). Best practices for designing asphalt mixtures with reclaimed asphalt pavement (RAP). Infraestructura Vial, 19(33). doi:10.15517/iv.v19i33.32921. (In Spanish).
[67] Vigneswaran, S., Yun, J., Jeong, K. D., Lee, M. S., & Lee, S. J. (2023). Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders. Sustainability (Switzerland), 15(18), 13568. doi:10.3390/su151813568.
[68] Albayati, A., Al- Mosawe, H., Sukhija, M., & Naidu, A. N. P. (2023). Appraising the synergistic use of recycled asphalt pavement and recycled concrete aggregate for the production of sustainable asphalt concrete. Case Studies in Construction Materials, 19, e02237. doi:10.1016/j.cscm.2023.e02237.
[69] Bérubé, M. A., Lamothe, S., Bilodeau, K., & Carter, A. (2023). Laboratory Study of the Effects of the Mixer Type and Mixing Time on the Volumetric Properties and Performance of a HMA with 30 Percent Reclaimed Asphalt Pavement. Materials, 16(3), 1300. doi:10.3390/ma16031300.
[70] Gottumukkala, B., Mullapudi, R. S., Reddy, K. K., & Kusam, S. R. (2023). A Method for the Determination of Mixing Temperatures of Different Components of Recycled Hot Mix Asphalt Mixtures. International Journal of Pavement Research and Technology, 16(3), 606–620. doi:10.1007/s42947-022-00151-4.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
