Experimental Investigation on Pervious Recycled Aggregate Concrete Made of Waste Porcelain
Downloads
Doi: 10.28991/CEJ-2024-010-09-08
Full Text: PDF
[2] Gesoʇlu, M., Güneyisi, E., Khoshnaw, G., & Ipek, S. (2014). Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19–24. doi:10.1016/j.conbuildmat.2014.09.047.
[3] Gesoǧlu, M., Güneyisi, E., Khoshnaw, G., & Ipek, S. (2014). Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 63, 206–213. doi:10.1016/j.conbuildmat.2014.04.046.
[4] Guo, L., Guan, Z., Guo, L., Shen, W., Xue, Z., Chen, P., & Li, M. (2020). Effects of recycled aggregate content on pervious concrete performance. Journal of Renewable Materials, 8(12), 1711–1727. doi:10.32604/jrm.2020.013415.
[5] Leon Raj, J., & Chockalingam, T. (2020). Strength and abrasion characteristics of pervious concrete. Road Materials and Pavement Design, 21(8), 2180–2197. doi:10.1080/14680629.2019.1596828.
[6] Kacha, S. A. P. S. (2016). Utilization of waste materials in the production of pervious concrete–A Review. International Journal for Scientific Research & Development, 4(9), 442-449.
[7] Denisiewicz, A., Ššliwa, M., Kula, K., & Socha, T. (2019). Experimental investigation of concrete with recycled aggregates for suitability in concrete structures. Applied Sciences (Switzerland), 9(23), 5010. doi:10.3390/app9235010.
[8] Amin, A. A., Younis, K. H., Jirjees, F. F., & Ibrahim, T. K. (2021). Experimental study on mechanical properties of pervious concrete containing recycled aggregate. Civil Engineering and Architecture, 9(6), 1735–1743. doi:10.13189/cea.2021.090607.
[9] Habeeb, M. M., Younis, K. H., Jirjees, F. F., Maruf, S. M., & Ibrahim, T. K. (2022). Behaviour of sustainable slag enriched concrete: Effect of fully replacement of natural coarse aggregate with construction waste. Materials Today: Proceedings, 57, 806–811. doi:10.1016/j.matpr.2022.02.389.
[10] Keshavarz, Z., & Mostofinejad, D. (2019). Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construction and Building Materials, 195, 218–230. doi:10.1016/j.conbuildmat.2018.11.033.
[11] Tavares, L. M., & Kazmierczak, C. S. (2016). The influence of recycled concrete aggregates in pervious concrete. Revista IBRACON de Estruturas e Materiais, 9(1), 75–89. doi:10.1590/s1983-41952016000100006.
[12] Sai Sindhu, K., & Suresh Babu, T. (2015). Study and Comparison of Mechanical Properties, Durability and Permeability of M15, M20, M25 Grades of Pervious Concrete with Conventional Concrete. International Journal of Applied Research 2015, 1 (10), 676-681.
[13] Fanijo, E. O., Kolawole, J. T., Babafemi, A. J., & Liu, J. (2023). A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Cleaner Materials, 9, 100199. doi:10.1016/j.clema.2023.100199.
[14] Yaba, H. K., Naji, H. S., Younis, K. H., & Ibrahim, T. K. (2021). Compressive and flexural strengths of recycled aggregate concrete: Effect of different contents of metakaolin. Materials Today: Proceedings, 45, 4719–4723. doi:10.1016/j.matpr.2021.01.164.
[15] Théréné, F., Keita, E., Naí«l-Redolfi, J., Boustingorry, P., Bonafous, L., & Roussel, N. (2020). Water absorption of recycled aggregates: Measurements, influence of temperature and practical consequences. Cement and Concrete Research, 137, 106196. doi:10.1016/j.cemconres.2020.106196.
[16] Niu, H., Tarigh, J., Na, H., Wang, X., Zhang, X., & Hui, C. (2021). Residual compressive and flexural strength of a high strength recycled aggregate concrete. International Journal of Scientific Development and Research, 6(6), 182-195.
[17] Çakir, O. (2014). Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Construction and Building Materials, 68, 17–25. doi:10.1016/j.conbuildmat.2014.06.032.
[18] Al-Luhybi, A. S. (2017). Studying the Effect of Adding Marble and Porcelain Waste on Mechanical Properties of Concrete Containing Recycled Aggregate. Engineering and Technology Journal, 35(7), 668–674. doi:10.30684/etj.35.7a.1.
[19] Anderson, D. J., Smith, S. T., & Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Construction and Building Materials, 117, 20–28. doi:10.1016/j.conbuildmat.2016.04.153.
[20] El-Abidi, K. M. A., Mijarsh, M. J. A., & Abas, N. F. (2022). Properties of porcelain influenced concrete. European Journal of Environmental and Civil Engineering, 26(3), 879–890. doi:10.1080/19648189.2019.1684383.
[21] Sua-iam, G., & Jamnam, S. (2023). Influence of calcium carbonate on green self-compacting concrete incorporating porcelain tile waste as coarse aggregate replacement. Case Studies in Construction Materials, 19, 2366. doi:10.1016/j.cscm.2023.e02366.
[22] Alshahwany, R. B., Abdulkareem, O. M., & Shlla, R. D. (2024). Influence of Ceramic Wastes as a Recycled Coarse Aggregate with Different Maximum Sizes on the Concrete. The Open Civil Engineering Journal, 18(1). doi:10.2174/0118741495298085240326062433.
[23] BS EN 197-1. (2019). Cement - Composition, specifications and conformity criteria for common cements. British Standard Institute (BSI), London, United Kingdom.
[24] BS EN 12390-3. (2009). Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
[25] BS EN 12390-5. (2009). Testing Hardened Concrete Part 5: Flexural Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
[26] ASTM D5084-03. (2010). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, Pennsylvania, United States. doi:10.1520/D5084-03.
[27] BS EN 12390-6. (2009). Testing Hardened Concrete Part 6: Splitting tensile Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
[28] ACI 544.2R-89. (1999). Measurement of Properties of Fiber Reinforced Concrete. American Concrete Institute (ACI), Michigan, United States.
[29] BS EN 14157. (2017). Natural stone test methods. Determination of the abrasion resistance. British Standard Institute (BSI), London, United Kingdom.
[30] BS EN 12350-2. (2009). Testing fresh concrete Part 2: Slump-test. British Standard Institute (BSI), London, United Kingdom.
[31] Taffese, W. Z. (2018). Suitability Investigation of Recycled Concrete Aggregates for Concrete Production: An Experimental Case Study. Advances in Civil Engineering, 2018, 8368351. doi:10.1155/2018/8368351.
[32] Silva, R. V., de Brito, J., & Dhir, R. K. (2018). Fresh-state performance of recycled aggregate concrete: A review. Construction and Building Materials, 178, 19–31. doi:10.1016/j.conbuildmat.2018.05.149.
[33] Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201–217. doi:10.1016/j.conbuildmat.2014.04.117.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
