The Effect of Additional Baffle Plates on Double-Stage Gravitational Water Vortex Turbine
Abstract
Doi: 10.28991/CEJ-2025-011-02-011
Full Text: PDF
Keywords
References
International Energy Agency. (2022). World energy outlook 2022. International Energy Agency, Paris, France. doi:10.1787/3a469970-en.
Suryatna, B. S., Agustina, T., & Sugiarto. (2021). Prototype design of waterwheel micro hydro power plants for small water discharge. IOP Conference Series: Earth and Environmental Science, 700(1), 12032. doi:10.1088/1755-1315/700/1/012032.
BPPT. (2021). Outlook Energi Indonesia 2021. National Energy Council of the Republic of Indonesia, Jakarta, Indonesia. Available online: https://www.den.go.id/publikasi/Outlook-Energi-Indonesia (accessed on January 2025).
U.S. Department of Energy (2025). Benefits of Hydropower. Committed to Restoring America’s Energy Dominance, Washington, United States. Available online: https://www.energy.gov/eere/water/benefits-hydropower (accessed on January 2025).
Kaunda, C. S., Kimambo, C. Z., & Nielsen, T. K. (2012). Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges. ISRN Renewable Energy, 2012, 1–15. doi:10.5402/2012/730631.
Kunalan, K. T. (2022). A performance investigation of a multi-staging hydrokinetic turbine for river flow. Progress in Energy and Environment, 17(1), 17–31. doi:10.37934/progee.17.1.1731.
Williamson, S. J., Stark, B. H., & Booker, J. D. (2013). Performance of a low-head pico-hydro Turgo turbine. Applied Energy, 102, 1114–1126. doi:10.1016/j.apenergy.2012.06.029.
Arfoa, A., Al-Mashakbeh, S., Al-Mashakbeh, A. S., & Awwad, A. E. (2023). Design and Analysis of a Fish-Friendly Micro Gravitational Water Vortex Power Plant (GWVPP) on Zarqa River, Jordan. Indonesian Journal of Electrical Engineering and Informatics, 11(2), 469-484. doi:10.52549/.v11i2.4382.
Prabowoputra, D. M. (2022). Simulation Study on Cross Flow Turbine Performance with an Angle of 20° to the Variation of the Number of Blades. International Journal of Mechanical Engineering and Robotics Research, 11(1), 31–36. doi:10.18178/ijmerr.11.1.31-36.
Mobeen, M., Jaweed, S., Abdullah, A., Rasheed, S., & Masud, M. (2023). Parametric Optimization of Gravitational Water Vortex Turbines for Enhanced Torque Generation †. Engineering Proceedings, 45(1), 3. doi:10.3390/engproc2023045003.
Sritram, P., Treedet, W., & Suntivarakorn, R. (2015). Effect of turbine materials on power generation efficiency from free water vortex hydro power plant. IOP Conference Series: Materials Science and Engineering, 103(1), 12018. doi:10.1088/1757-899X/103/1/012018.
Dhakal, S., Timilsina, A. B., Dhakal, R., Fuyal, D., Bajracharya, T. R., Pandit, H. P., Amatya, N., & Nakarmi, A. M. (2015). Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant. Renewable and Sustainable Energy Reviews, 48, 662–669. doi:10.1016/j.rser.2015.04.030.
Nishi, Y., & Inagaki, T. (2017). Performance and Flow Field of a Gravitation Vortex Type Water Turbine. International Journal of Rotating Machinery, 2017, 1–11. doi:10.1155/2017/2610508.
Timilsina, A. B., Mulligan, S., & Bajracharya, T. R. (2018). Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean Technologies and Environmental Policy, 20(8), 1737–1760. doi:10.1007/s10098-018-1589-0.
Khan, T., Asif, M. M., Ahmed, H., Islam, M., & Harun, Z. (2021). Design and Development of a Vortex Turbine for the Hilly Regions of Bangladesh. Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT 2021), 290-297. doi:10.2991/aer.k.211106.046.
Handoko, R., Septiyanto, M. D., Tjahjana, D. D. D. P., Himawanto, D. A., Yaningsih, I., & Hadi, S. (2023). Performance Testing and Analysis of Gravitational Water Vortex Turbine: A Modified Experimental Study on Blade Arc and Inclination Angle. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 109(1), 147–161. doi:10.37934/arfmts.109.1.147161.
Rahman, M. M., Tan, J. H., Fadzlita, M. T., & Wan Khairul Muzammil, A. R. (2017). A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources. IOP Conference Series: Materials Science and Engineering, 217(1), 12007. doi:10.1088/1757-899X/217/1/012007.
Maulana, D. W., Rizwan, F. M., Mulyana, C., Faizal, F., Panatarani, C., & Joni, I. M. (2020). Gravitational water vortex Pico hydro power modeling for aquaculture implementation. Journal of Physics: Conference Series, 1568(1), 12016. doi:10.1088/1742-6596/1568/1/012016.
Bajracharya, T. R., Shakya, S. R., Timilsina, A. B., Dhakal, J., Neupane, S., Gautam, A., & Sapkota, A. (2020). Effects of Geometrical Parameters in Gravitational Water Vortex Turbines with Conical Basin. Journal of Renewable Energy, 2020, 1–16. doi:10.1155/2020/5373784.
Nishi, Y., Suzuo, R., Sukemori, D., & Inagaki, T. (2020). Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance. Renewable Energy, 155, 1103–1117. doi:10.1016/j.renene.2020.03.186.
Saleem, A. S., Cheema, T. A., Ullah, R., Ahmad, S. M., Chattha, J. A., Akbar, B., & Park, C. W. (2020). Parametric study of single-stage gravitational water vortex turbine with cylindrical basin. Energy, 200, 117464. doi:10.1016/j.energy.2020.117464.
Srihari, P. S. V. V., Narayana, P. S. V. V. S., Kumar, K. V. V. S. S., Raju, G. J., Naveen, K., & Anand, P. (2019). Experimental study on vortex intensification of gravitational water vortex turbine with novel conical basin. 1ST International Conference on Manufacturing, Material Science and Engineering (ICMMSE-2019), 2200, 020082. doi:10.1063/1.5141252.
Chattha, J. A., Cheema, T. A., & Khan, N. H. (2017). Numerical investigation of basin geometries for vortex generation in a gravitational water vortex power plant. 2017 8th International Renewable Energy Congress (IREC), 1–5. doi:10.1109/irec.2017.7926028.
Rostami, A. B., & Armandei, M. (2017). Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renewable and Sustainable Energy Reviews, 70, 193–214. doi:10.1016/j.rser.2016.11.202.
Sotoudeh, N., Maddahian, R., & Cervantes, M. J. (2019). Formation of Rotating Vortex Rope in the Francis-99 Draft Tube. IOP Conference Series: Earth and Environmental Science, 240, 022017. doi:10.1088/1755-1315/240/2/022017.
Payambarpour, S. A., Najafi, A. F., & Magagnato, F. (2019). Investigation of Blade Number Effect on Hydraulic Performance of In-Pipe Hydro Savonius Turbine. International Journal of Rotating Machinery, 2019, 1–14. doi:10.1155/2019/8394191.
Kueh, T. C., Beh, S. L., Ooi, Y. S., & Rilling, D. G. (2017). Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance. Journal of Physics: Conference Series, 822(1), 12066. doi:10.1088/1742-6596/822/1/012066.
Adeyeye, K. A., Ijumba, N., & Colton, J. (2021). The Effect of the Number of Blades on the Efficiency of a Wind Turbine. IOP Conference Series: Earth and Environmental Science, 801(1), 012020. doi:10.1088/1755-1315/801/1/012020.
Zhou, G., & Ye, Q. (2012). Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Applied Thermal Engineering, 37, 241–248. doi:10.1016/j.applthermaleng.2011.11.024.
Zhang, L. J., Xie, M. P., & Li, Y. P. (2018). Analysis on hydraulic characteristics of Kaplan water turbine with different spiral casing and stay vane. IOP Conference Series: Earth and Environmental Science, 163(1), 12063. doi:10.1088/1755-1315/163/1/012063.
Yaakob, O. B., M. Ahmed, Y., Elbatran, A. H., & Shabara, H. M. (2014). A Review on Micro Hydro Gravitational Vortex Power and Turbine Systems. Jurnal Teknologi, 69(7), 1-7. doi:10.11113/jt.v69.3259.
Shrestha, U., Chen, Z., & Choi, Y. Do. (2018). Study on the effect of the runner design parameters on 50 MW Francis hydro turbine model performance. Journal of Physics: Conference Series, 1042(1), 12006. doi:10.1088/1742-6596/1042/1/012006.
Ullah, R., Cheema, T. A., Saleem, A. S., Ahmad, S. M., Chattha, J. A., & Park, C. W. (2019). Performance analysis of multi-stage gravitational water vortex turbine. Energy Conversion and Management, 198, 111788. doi:10.1016/j.enconman.2019.111788.
Cheema, T. A., Ullah, R., & Saleem, A. S. (2019). Performance analysis of a two-stage gravitational water vortex turbine. IOP Conference Series: Earth and Environmental Science, 291(1), 12039. doi:10.1088/1755-1315/291/1/012039.
Zhao, R., Zhuge, W., Zhang, Y., Yang, M., Martinez-Botas, R., & Yin, Y. (2015). Study of two-stage turbine characteristic and its influence on turbo-compound engine performance. Energy Conversion and Management, 95, 414–423. doi:10.1016/j.enconman.2015.01.079.
Kayastha, M., Raut, P., Subedi, N. K., Ghising, S. T., & Dhakal, R. (2019). CFD evaluation of performance of Gravitational Water Vortex Turbine at different runner positions. KECConference2019, Kantipur Engineering College, Dhapakhel, Lalitpur, Nepal. doi:10.31224/osf.io/d9qn3.
Wanchat, S., Suntivarakorn, R., Wanchat, S., Tonmit, K., & Kayanyiem, P. (2013). A parametric study of a gravitation vortex power plant. Advanced Materials Research, 805–806, 811–817. doi:10.4028/www.scientific.net/AMR.805-806.811.
Aziz, M. Q. A., Idris, J., & Abdullah, M. F. (2022). Experimental Study on Enclosed Gravitational Water Vortex Turbine (GWVT) Producing Optimum Power Output for Energy Production. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 95(2), 146–158. doi:10.37934/arfmts.95.2.146158.
Dahal, N., Shrestha, R. K., Sherchan, S., Milapati, S., Shakya, S. R., & Jha, A. K. (2020). Performance Analysis of Booster based Gravitational Water Vortex Power Plant. Journal of the Institute of Engineering, 15(3), 90–96. doi:10.3126/jie.v15i3.32026.
Nadhief, M. I., Prabowoputra, D. M., Hadi, S., & Tjahjana, D. D. D. P. (2020). Experimental study on the effect of variation of blade arc angle to the performance of savonius water turbine flow in pipe. International Journal of Mechanical Engineering and Robotics Research, 9(5), 779–783. doi:10.18178/ijmerr.9.5.779-783.
Prasetyo, H., Budiana, E. P., Tjahjana, D., & Hadi, S. (2018). The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application. IOP Conference Series: Materials Science and Engineering, 308(1), 12022. doi:10.1088/1757-899X/308/1/012022.
Mulligan, S., De Cesare, G., Casserly, J., & Sherlock, R. (2018). Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy. Scientific Reports, 8(1), 824. doi:10.1038/s41598-017-16950-w.
Sritram, P., & Suntivarakorn, R. (2019). The effects of blade number and turbine baffle plates on the efficiency of free-vortex water turbines. IOP Conference Series: Earth and Environmental Science, 257(1), 12040. doi:10.1088/1755-1315/257/1/012040.
Wichian, P., & Suntivarakorn, R. (2016). The Effects of Turbine Baffle Plates on the Efficiency of Water Free Vortex Turbines. Energy Procedia, 100, 198–202. doi:10.1016/j.egypro.2016.10.165.
Chen, L., Chen, J., & Zhang, Z. (2018). Review of the Savonius rotor’s blade profile and its performance. Journal of Renewable and Sustainable Energy, 10(1), 013306. doi:10.1063/1.5012024.
Prabowoputra, D. M., & Prabowo, A. R. (2022). Effect of Geometry Modification on Turbine Performance: Mini-Review of Savonius Rotor. International Journal of Mechanical Engineering and Robotics Research, 11(10), 777–783. doi:10.18178/ijmerr.11.10.777-783.
Jeon, K. S., Jeong, J. I., Pan, J. K., & Ryu, K. W. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy, 79(1), 167–176. doi:10.1016/j.renene.2014.11.035.
Kassab, S. Z., Chemengich, S. J., & Lotfy, E. R. (2022). The effect of endplate addition on the performance of the savonius wind turbine: A 3-D study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236(8), 1582–1592. doi:10.1177/09576509221098480.
Dhakal, R., Bajracharya, T. R., Shakya, S. R., Kumal, B., Kathmandu, N., Khanal, K., Kavre, N., Williamson, S. J., Gautam, S., & Ghale, D. P. (2017). Computational and experimental investigation of runner for gravitational water vortex power plant. Proceedings of a Meeting Held, 5, 8. doi:10.31219/osf.io/4r5cj.
Septyaningrum, E., Sutardi, S., Hantoro, R., Rijal Firdausi, A., & Prasetyo, R. A. (2024). The effect of runner installation and design on the performance of gravitational vortex water turbine. International Journal of Green Energy, 21(7), 1434-1446. doi:10.1080/15435075.2023.2253900.
Sinaga, D. A., Septiyanto, M. D., Arifin, Z., Rusdiyanto, G., Prasetyo, S. D., & Hadi, S. (2023). The Effect of Blade Distances on the Performance of Double-Stage Gravitational Water Vortex Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 109(1), 196–209. doi:10.37934/arfmts.109.1.196209.
Coleman, H. W., & Steele, W. G. (2009). Experimentation, Validation, and Uncertainty Analysis for Engineers. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470485682.
Trivedi, C., Cervantes, M. J., & Dahlhaug, O. G. (2016). Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies, 9(2), 74. doi:10.3390/en9020074.
Krzemianowski, Z., & Kaniecki, M. (2023). Low-head high specific speed Kaplan turbine for small hydropower – design, CFD loss analysis and basic, cavitation and runaway investigations: A case study. Energy Conversion and Management, 276, 116558. doi:10.1016/j.enconman.2022.116558.
Li, X., & Palazzolo, A. (2022). A review of flywheel energy storage systems: state of the art and opportunities. Journal of Energy Storage, 46, 103576. doi:10.1016/j.est.2021.103576.
Rahman, R. A., Septiyanto, M. D., Prasetyo, A., Kristiawan, B., Adrianto, S., & Hadi, S. (2024). The effect of the additional baffle plate on vortex turbine performance. AIP Conference Proceedings, 3069(1), 20017. doi:10.1063/5.0205754.
Ullah, R., & Cheema, T. A. (2022). Experimental Investigation of Runner Design Parameters on the Performance of Vortex Turbine. Engineering Proceedings, 23(1), 14. doi:10.3390/engproc2022023014.
DOI: 10.28991/CEJ-2025-011-02-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ari Prasetyo

This work is licensed under a Creative Commons Attribution 4.0 International License.