Modeling of the Full-Scale Secondary Sedimentation Basin Using the GPS-X Model
Downloads
Doi: 10.28991/CEJ-2024-010-09-017
Full Text: PDF
[2] Li, B., & Stenstrom, M. K. (2013). Research advances and challenges in one-dimensional mathematical modeling of secondary settling tanks”a critical review. 86th Annual Water Environment Federation Technical Exhibition and Conference, WEFTEC 2013, 6, 3934–3952. doi:10.2175/193864713813685458.
[3] Li, B. (2016). One-Dimensional Modeling of Secondary Settling Tanks. The Regents of the University of California, California, United States.
[4] Mashi, A. L., & Rahama, M. S. (2015). Effects of Sludge Settleability in Final Sedimentation Tank. International Journal of Scientific & Engineering Research, 6(7), 2229–5518.
[5] Ekama, G. A., & Marais, P. (2004). Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. Water Research, 38(3), 495–506. doi:10.1016/j.watres.2003.10.026.
[6] Hazen, A. (1904). On sedimentation. Transactions of the American Society of Civil Engineers, 53(2), 45-71. doi:10.1061/TACEAT.0001655.
[7] Dick, R. I., & Vesilind, P. A. (1969). The Sludge Volume Index: What Is It? In Journal (Water Pollution Control Federation), 41(7), 1285–1291.
[8] Mursalim, I. A., Pallu, M. S., Selintung, M., & Rahim, I. R. (2021). The effectiveness of increasing the amount of Return Activated Sludge (RAS) in wastewater with a combination biofilter system on bulking parameters. IOP Conference Series: Earth and Environmental Science, 841(1), 12026. doi:10.1088/1755-1315/841/1/012026.
[9] KriŠ¡, J., & Hadi, G. A. (2008). Study the effect of temperature on sedimentation tanks performance. Water Supply and Water Quality. 8th International Scientific and Technical Conference on Water Supply and Water Quality, 439–453.
[10] Raeesh, M., Devi, T. T., & Hirom, K. (2023). Recent Developments on Application of Different Turbulence and Multiphase Models in Sedimentation Tank Modeling”a Review. Water, Air, and Soil Pollution, 234(1), 5. doi:10.1007/s11270-022-06007-8.
[11] Lasaki, B. A., Maurer, P., & Schönberger, H. (2023). Effect of coupling primary sedimentation tank (PST) and microscreen (MS) to remove particulate organic carbon (POC): a study to mitigate energy demand in municipal wastewater treatment plants. Sustainable Environment Research, 33(1), 25. doi:10.1186/s42834-023-00186-7.
[12] Dairi, S., Khoualdia, W., Mrad, D., Bouamrane, A., Djebbar, Y., & Abida, H. (2023). Improving secondary settling tanks performance by applying CFD models for design and operation. Water Supply, 23(6), 2313–2331. doi:10.2166/ws.2023.136.
[13] Wu, X., Wei, J., Shen, L., & Li, X. (2024). Investigation of the Influence of Operating Parameters on the Settling Performance of a Vertical Sedimentation Tank Through Computational Fluid Dynamics Simulations. Water, Air, and Soil Pollution, 235(5), 1–14. doi:10.1007/s11270-024-07110-8.
[14] Poorkarimi, A., Mafakheri, K., & Maleki, S. (2024). Effect of inlet and baffle position on the removal efficiency of sedimentation tank using Flow-3D software. Journal of Hydraulic Structures, 9(4), 76–87.
[15] Hydromantis, E. S. S. (2017). Inc. GPS-X Technical Reference; Hydromantis ESS. In Inc.: Hamilton, ON, Canada.
[16] Faris, A. M., Zwain, H. M., Hosseinzadeh, M., & Siadatmousavi, S. M. (2022). Modeling of novel processes for eliminating sidestreams impacts on full-scale sewage treatment plant using GPS-X7. Scientific Reports, 12(1), 2986. doi:10.1038/s41598-022-07071-0.
[17] Jasim, N. A. (2020). The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Engineering, 7(1), 1723782. doi:10.1080/23311916.2020.1723782.
[18] Mannina, G., Cosenza, A., Vanrolleghem, P. A., & Viviani, G. (2011). A practical protocol for calibration of nutrient removal wastewater treatment models. Journal of Hydroinformatics, 13(4), 575–595. doi:10.2166/hydro.2011.041.
[19] Nile, B. K., Faris, A. M., Alesary, H. F., Jafar, N. N. A., Ismail, H. K., Abdulredha, M., Al Juboury, M. F., Hassan, W. H., Ahmed, L. M., Abid, H. R., & Barton, S. (2024). Simulation study of a practical approach to enhance cadmium removal via biological treatment by controlling the concentration of MLSS. Scientific Reports, 14(1), 1714. doi:10.1038/s41598-023-50843-5.
[20] Rice, E. W., Bridgewater, L., & American Public Health Association (Eds.). (2012). Standard methods for the examination of water and wastewater, Volume 10, American Public Health Association, Washington D.C., United States.
[21] Hamad, N. F., Nile, B. K., Alamir, H. T. A., Faris, A. M., Ismail, H. K., Hassan, W. H., Ahmed, L. M., Alesary, H. F., & Barton, S. (2023). Case study of hydrogen sulfide release in the sulfate-rich sewage drop structure. Journal of Water and Climate Change, 14(10), 3713–3725. doi:10.2166/wcc.2023.283.
[22] Al-Amery, Z. M., Alyaseri, I., & Al-Saadi, R. J. (2023). Deterioration of Wastewater Treatment Processes in Iraq: A Case Study from Al-Samawah. AIP Conference Proceedings, 2806(1), 0163663. doi:10.1063/5.0163663.
[23] Takács, I., Patry, G. G., & Nolasco, D. (1991). A dynamic model of the clarification-thickening process. Water Research, 25(10), 1263–1271.
[24] Faris, A. M., Zwain, H. M., Hosseinzadeh, M., Majdi, H. S., & Siadatmousavi, S. M. (2022). Start-up and operation of novel EN-MBBR system for sidestreams treatment and sensitivity analysis modeling using GPS-X simulation. Alexandria Engineering Journal, 61(12), 10805–10818. doi:10.1016/j.aej.2022.04.026.
[25] Hassan, W. H., Faris, A. M., & Faisal, A. A. H. (2024). Using TOXCHEM model for simulation the hydrogen sulfide behavior in a full-scale MBBR process. Desalination and Water Treatment, 317, 100244. doi:10.1016/j.dwt.2024.100244.
[26] Zwain, H. M., Nile, B. K., Faris, A. M., Vakili, M., & Dahlan, I. (2020). Modelling of hydrogen sulfide fate and emissions in extended aeration sewage treatment plant using TOXCHEM simulations. Scientific Reports, 10(1), 22209. doi:10.1038/s41598-020-79395-8.
[27] Zwain, H. M., Faris, A. M., Hassan, W. H., Soomro, S. e. hyde., & Majdi, A. (2024). Modeling the effects of sidestreams recycling on wastewater treatment plant performance operated by anaerobic-anoxic-oxic (A2/O) processes using GPS-X8 simulation. Results in Engineering, 22, 102173. doi:10.1016/j.rineng.2024.102173.
[28] Mu'azu, N. D., Alagha, O., & Anil, I. (2020). Systematic modeling of municipal wastewater activated sludge process and treatment plant capacity analysis using GPS-X. Sustainability (Switzerland), 12(19), 8182. doi:10.3390/su12198182.
[29] Faris, A. M., Nile, B. K., Mussa, Z. H., Alesary, H. F., Al Juboury, M. F., Hassan, W. H., Al-Bahrani, H. A., & Barton, S. (2022). Fate and emission of methyl mercaptan in a full-scale MBBR process by TOXCHEM simulation. Journal of Water and Climate Change, 13(6), 2386–2398. doi:10.2166/wcc.2022.438.
[30] Wang, J., Li, Q., Qi, R., Tandoi, V., & Yang, M. (2015). Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant. Process Biochemistry, 49(12), 2258–2265. doi:10.1016/j.procbio.2014.08.005.
[31] Nile, B. K., & Faris, A. M. (2018). The effect of MLSS values on removal of COD and phosphorus using control method of return activated sludge concentration. Journal of Engineering and Applied Sciences, 13(22), 9730–9734. doi:10.3923/jeasci.2018.9730.9734.
[32] Amanatidou, E., Samiotis, G., Trikoilidou, E., Pekridis, G., & Taousanidis, N. (2015). Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time. Water Research, 69, 20–29. doi:10.1016/j.watres.2014.10.061.
[33] Alattabi, A. W., Harris, C. B., Alkhaddar, R. M., Ortoneda-Pedrola, M., & Alzeyadi, A. T. (2019). An investigation into the effect of MLSS on the effluent quality and sludge settleability in an aerobic-anoxic sequencing batch reactor (AASBR). Journal of Water Process Engineering, 30, 100479. doi:10.1016/j.jwpe.2017.08.017.
[34] Ong, S. L. (1992). Effect of measurement error of settling velocity on secondary sedimentation tank design. Water Environment Research, 64(2), 104–110. doi:10.2175/wer.64.2.2.
[35] Metcalf, & Eddy. (2022). Wastewater Engineering:"¯Treatment and Resource Recovery. McGraw Hill Education, New York, United States.
[36] Wells, S. A., & LaLiberte, D. M. (1998). Winter temperature gradients in circular clarifiers. Water environment research, 70(7), 1274-1279. doi:10.2175/106143098X123642.
[37] Alisawi, H. A. O. (2020). Performance of wastewater treatment during variable temperature. Applied Water Science, 10(4), 89. doi:10.1007/s13201-020-1171-x.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.