Performance of Treated Date Palm Leaf Fiber as a Sustainable Reinforcement for Different Soil

Noor S. Al-Hassnawi, Mastura Azmi, Mohammed Y. Fattah, Fauziah Ahmad

Abstract


The use of sustainable materials in geotechnical applications has increased in recent years due to their positive impacts on geo-environmental and future generations. This paper contributes to existing knowledge on geocell reinforcement of soil by proposing a new inexpensive product: cells made from natural materials, Date Palm Leaf fiber coated with Bitumen (DPLB), to improve its durability, as an alternative to commercially available high-density polyethylene (HDPE) geocells. A physical laboratory model was designed to examine the performance of the DPLB cell and HDPE cell reinforced base layer under repeated loading. The study tested different infill materials gravel, sand, and recycled asphalt pavement (RAP) in DPLB cells and HDPLE geocell-reinforced granular layers and compared them to unreinforced layers. The reinforcement's performance was assessed using elastic deformation, permanent deformation, traffic benefit ratio, and rut depth reduction. Results showed that both DPLB cell and geocell reinforced sand decreased the cumulative permanent deformations compared to the unreinforced layer. DPLB reinforcement cells improved the permanent deformation behavior by 30% due to the lateral restriction provided by the DPLB pockets on the infill materials, while the geocell improved it by 7%. The traffic benefit ratio (TBR) of geocell-reinforced RAP is 26% greater than that of the DPLB cell-reinforced RAP section, although both geocell and DPLB cell exhibited similar TBR values in the case of gravel infill materials. The experimental results showed that DPLB cells are a cost-effective and environmentally friendly substitute for commercially available HDPE geocells in soil reinforcement applications.

 

Doi: 10.28991/CEJ-2024-010-10-018

Full Text: PDF


Keywords


Geocell; Date Palm Leaf Fiber; Permanent Deformation; Repeated Load Test; Elastic Deformation; RAP.

References


Michalowski, R. L. (2004). Limit Loads on Reinforced Foundation Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 381–390. doi:10.1061/(asce)1090-0241(2004)130:4(381).

Chao, S.-J. (2008). Performance study on geosynthetic reinforced shallow foundations. International Conference on Case Histories in Geotechnical Engineering, 11-16 August, 2008, Arlington, United States.

Lal, D., Sankar, N., & Chandrakaran, S. (2017). Behaviour of square footing on sand reinforced with coir geocell. Arabian Journal of Geosciences, 10(15). doi:10.1007/s12517-017-3131-9.

Jaiswal, S., Srivastava, A., & Bhushan Chauhan, V. (2021). Improvement of Bearing Capacity of Shallow Foundation Resting on Wraparound Geotextile Reinforced Soil. IFCEE 2021, 65–74. doi:10.1061/9780784483411.007.

Mishra, B. (2016). A Study on Ground Improvement Technique and it’s an application. International Journal of Innovative Research in Science, 5(1), 72–86. doi:10.15680/IJIRSET.2015.0501010.

Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. Construction and Building Materials, 154, 658–674. doi:10.1016/j.conbuildmat.2017.07.230.

Ghani, S., Kumari, S., & Choudhary, A. K. (2024). Geocell Mattress Reinforcement for Bottom Ash: A Comprehensive Study of Load-Settlement Characteristics. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 48(2), 727–743. doi:10.1007/s40996-023-01205-8.

Luo, X., Lu, Z., Yao, H., Zhang, J., & Song, W. (2022). Experimental study on soft rock subgrade reinforced with geocell. Road Materials and Pavement Design, 23(9), 2190–2204. doi:10.1080/14680629.2021.1948907.

Banerjee, S., Manna, B., & Shahu, J. T. (2024). Geocell as a Promising Reinforcement Technique for Road Pavement: A State of the Art. Indian Geotechnical Journal, 54(4), 1644–1665. doi:10.1007/s40098-023-00818-0.

Al-Hassnawi, N. S., Ahmad, F., Fattah, M. Y., & Azmi, M. (2024). Review of Natural Fiber Application for Sustainable Ground Improvement. Proceedings of AWAM International Conference on Civil Engineering 2022 - Volume 3, AICCE 2022, Lecture Notes in Civil Engineering, 386. Springer, Singapore. doi:10.1007/978-981-99-6026-2_10.

Rajagopal, K., Krishnaswamy, N. R., & Latha, G. M. (1999). Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3), 171–184. doi:10.1016/S0266-1144(98)00034-X.

Yang, X. (2010). Numerical Analyses of Geocell- Reinforced Granular Soils under Static and Repeated Loads. PhD Thesis, University of Kansas, Lawrence, United States.

Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology, 11(2), 114–127. doi:10.1016/j.ijprt.2017.03.007.

Sheikh, I. R., & Shah, M. Y. (2020). Experimental study on geocell reinforced base over dredged soil using static plate load test. International Journal of Pavement Research and Technology, 13(3), 286–295. doi:10.1007/s42947-020-0238-2.

Fattah, M. Y., Zbar, B. S., & Al-Kalali, H. H. M. (2023). Experimental Investigation of the Performance of Buried Flexible Pipe in Reinforced Sand. Slovak Journal of Civil Engineering, 31(2), 48–60. doi:10.2478/sjce-2023-0012.

Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2009). Behavior of Geocell-Reinforced Granular Bases under Static and Repeated Loads (pp. 409–416). doi:10.1061/41023(337)52.

Tafreshi, S. N. M., & Dawson, A. R. (2010). Behaviour of footings on reinforced sand subjected to repeated loading - Comparing use of 3D and planar geotextile. Geotextiles and Geomembranes, 28(5), 434–447. doi:10.1016/j.geotexmem.2009.12.007.

Thakur, J. K., Han, J., Pokharel, S. K., & Parsons, R. L. (2012). Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading. Geotextiles and Geomembranes, 35, 14–24. doi:10.1016/j.geotexmem.2012.06.004.

Moghaddas Tafreshi, S. N., & Dawson, A. R. (2012). A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand. Geotextiles and Geomembranes, 32, 55–68. doi:10.1016/j.geotexmem.2011.12.003.

Khan, M. A., & Puppala, A. J. (2023). Sustainable pavement with geocell reinforced reclaimed-asphalt-pavement (RAP) base layer. Journal of Cleaner Production, 387, 135802. doi:10.1016/j.jclepro.2022.135802.

Saride, S., Rayabharapu, V. K., & Vedpathak, S. (2015). Evaluation of Rutting Behaviour of Geocell Reinforced Sand Subgrades Under Repeated Loading. Indian Geotechnical Journal, 45(4), 378–388. doi:10.1007/s40098-014-0120-8.

Biabani, M. M., Indraratna, B., & Ngo, N. T. (2016). Modelling of geocell-reinforced subballast subjected to cyclic loading. Geotextiles and Geomembranes, 44(4), 489–503. doi:10.1016/j.geotexmem.2016.02.001.

Suku, L., Prabhu, S. S., Ramesh, P., & Babu, G. L. S. (2016). Behavior of geocell-reinforced granular base under repeated loading. Transportation Geotechnics, 9, 17–30. doi:10.1016/j.trgeo.2016.06.002.

Banerjee, S., Manna, B., & Shahu, J. T. (2024). Behaviour of Geocell Reinforcement in a Multi-Layered Flexible Pavement Under Repeated Loading. International Journal of Geosynthetics and Ground Engineering, 10(3), 1–17. doi:10.1007/s40891-024-00541-7.

Önal, Y., Çalışıcı, M., Kayadelen, C., & Altay, G. (2023). A comparative experimental study of geocell and geogrid-reinforced highway base layers under repeated loads. Road Materials and Pavement Design, 24(12), 2877–2892. doi:10.1080/14680629.2023.2182126.

George, A. M., Banerjee, A., Puppala, A. J., & Saladhi, M. (2021). Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements. International Journal of Pavement Engineering, 22(2), 181–191. doi:10.1080/10298436.2019.1587437.

Rayabharapu, V. K., & Saride, S. (2019). Geocell Reinforced Dense Sand Bases Overlying Weak Sand Sub-grades Under Repeated Loading. Ground Improvement Techniques and Geosynthetics. Lecture Notes in Civil Engineering, 14, Springer, Singapore. doi:10.1007/978-981-13-0559-7_32.

Biswas, S., Hussain, M., & Singh, K. L. (2024). Behavior of Bamboo and Jute Geocell Overlaying Soft Subgrade under Repeated Wheel Loading. Journal of Materials in Civil Engineering, 36(2), 4023570. doi:10.1061/jmcee7.mteng-16528.

Kolathayar, S., Aravind, C. A., & TG, S. (2021). Model Tests and Analytical Studies on Performance of Areca Leaf Cells as Cellular Confinement in Soil. Geomechanics and Geoengineering, 16(4), 237–248. doi:10.1080/17486025.2019.1664774.

Kolathayar, S., Narasimhan, S., Kamaludeen, R., & Sitharam, T. G. (2020). Performance of Footing on Clay Bed Reinforced with Coir Cell Networks. International Journal of Geomechanics, 20(8), 4020106. doi:10.1061/(asce)gm.1943-5622.0001719.

Hegde, A., & Sitharam, T. G. (2017). Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems. Transportation Geotechnics, 10, 73–84. doi:10.1016/j.trgeo.2017.01.001.

Kolathayar, S., Sowmya, S., & Priyanka, E. (2020). Comparative Study for Performance of Soil Bed Reinforced with Jute and Sisal Geocells as Alternatives to HDPE Geocells. International Journal of Geosynthetics and Ground Engineering, 6(4), 53. doi:10.1007/s40891-020-00238-7.

Al-Haddad, S. A., Fattah, M. Y., & Al-Ani, F. H. (2024). Protection of buried pipeline using geosynthetics–a review. Geomechanics and Geoengineering, 19(4), 503–518. doi:10.1080/17486025.2023.2288933.

Raymond, M. S., & Leffler, W. L. (2006). Oil and gas production in nontechnical language. Choice Reviews Online, 43(08), 43-4690-43–4690. doi:10.5860/choice.43-4690.

ASTM D5261-10. (2018). Test Method for Measuring Mass Per Unit Area of Geotextiles. ASTM International, Pennsylvania, United States. doi:10.1520/D5261-10R18.

ASTM D5199-12. (2019). Standard Test Method for Measuring the Nominal Thickness of Geosynthetics. ASTM International, Pennsylvania, United States. doi:10.1520/D5199-12R19.

ASTM D4632/D4632M-15a. (2023). Standard Test Method for Grab Breaking Load and Elongation of Geotextiles. ASTM International, Pennsylvania, United States. doi:10.1520/D4632_D4632M-15A.

ASTM D4355-05. (2017). Standard Test Method for Deterioration of Geotextiles by Exposure to Light, Moisture and Heat in a Xenon Arc Type Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/D4355-05.

ASTM D6241-14. (2022). Standard Test Method for Static Puncture Strength of Geotextiles and Geotextile-Related Products Using a 50-mm Probe. ASTM International, Pennsylvania, United States. doi:10.1520/D6241-14.

ASTM D4751-21a. (2021). Standard Test Methods for Determining Apparent Opening Size of a Geotextile. ASTM International, Pennsylvania, United States. doi:10.1520/D4751-21A.

ASTM D4991-99a. (2015). Standard Test Methods for Water Permeability of Geotextiles by Permittivity. ASTM International, Pennsylvania, United States. doi:10.1520/D4491-99AR14E01.

ASTM D698-12(2021). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.

State Corporation for Roads and Bridges. (2003). General Specification for Roads and Bridges (SORB/R9)—Hot Mix Asphaltic Concrete Pavement. Department of Planning and Studies, Ministry of Housing and Construction, Baghdad, Iraq.

Kumar, V. V., Saride, S., & Zornberg, J. G. (2021). Mechanical response of full-scale geosynthetic-reinforced asphalt overlays subjected to repeated loads. Transportation Geotechnics, 30, 100617. doi:10.1016/j.trgeo.2021.100617.

Tabatabaei Aghda, S. T., Ghanbari, A., & Tavakoli Mehrjardi, G. (2019). Evaluating the Applicability of Geocell-Reinforced Dredged Sand Using Plate and Wheel Load Testing. Transportation Infrastructure Geotechnology, 6(1), 21–38. doi:10.1007/s40515-018-00067-2.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 NOOR SAFAULDEEN alhassnawi, Mastura Azmi, Mohammed Fattah, Fauziah Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message