A Novel Exact Solution of Longshore Current and Its Application on Permeable Groin
Downloads
Doi: 10.28991/CEJ-2025-011-02-07
Full Text: PDF
[2] Ma, X., Wang, C., Zhao, C., Ji, M., Zhu, J., Yang, G., & Li, C. (2024). Identification and simulation the response of storm-induced coastal erosion in the China Yellow sea. Ocean Engineering, 300, 117394. doi:10.1016/j.oceaneng.2024.117394.
[3] Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Abdul Maulud, K. N., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., Mohamed, J., Mohd, F. A., Hamzah, S. B., & Yunus, K. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon, 10(4), 25609. doi:10.1016/j.heliyon.2024.e25609.
[4] Deng, B., Wu, H., Yang, S., & Zhang, J. (2017). Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River Estuary. Estuarine, Coastal and Shelf Science, 190, 1–10. doi:10.1016/j.ecss.2017.03.015.
[5] Jones, B. D., Collings, B., Dickson, M. E., Ford, M., Hikuroa, D., Bickler, S. H., & Ryan, E. (2024). Regional implementation of coastal erosion hazard zones for archaeological applications. Journal of Cultural Heritage, 67, 430–442. doi:10.1016/j.culher.2024.04.007.
[6] Dal Barco, M. K., Furlan, E., Pham, H. V., Torresan, S., Zachopoulos, K., Kokkos, N., Sylaios, G., & Critto, A. (2024). Multi-scenario analysis in the Apulia shoreline: A multi-tiers analytical framework for the combined evaluation and management of coastal erosion and water quality risks. Environmental Science and Policy, 153, 103665. doi:10.1016/j.envsci.2023.103665.
[7] Mensah, J., & Mattah, P. A. D. (2023). Illegal sand mining in coastal Ghana: The drivers and the way forward. Extractive Industries and Society, 13, 101224. doi:10.1016/j.exis.2023.101224.
[8] Lubis, A. M., Veronica, N., Saputra, R., Sinaga, J., Hasanudin, M., & Kusmanto, E. (2020). Investigasi Arus Sejajar Pantai (Longshore Current) di Daerah Abrasi Bengkulu Utara. Jurnal Kelautan Tropis, 23(3), 316–324. doi:10.14710/jkt.v23i3.8045.
[9] Hamid, N., Setyowati, D. L., Juhadi, Priyanto, A. S., Hardati, P., Soleh, M., Wijayanti, N. R., & Aroyandini, E. N. (2021). The Effect of Human Activities Towards Coastal Dynamics and Sustainable Coastal Management. International Journal of Sustainable Development and Planning, 16(8), 1479–1493. doi:10.18280/ijsdp.160809.
[10] Vaidya, A. M., Kori, S. K., & Kudale, M. D. (2015). Shoreline Response to Coastal Structures. Aquatic Procedia, 4, 333–340. doi:10.1016/j.aqpro.2015.02.045.
[11] Guimarí£es, A., Lima, M., Coelho, C., Silva, R., & Veloso-Gomes, F. (2016). Groin impacts on updrift morphology: Physical and numerical study. Coastal Engineering, 109, 63–75. doi:10.1016/j.coastaleng.2015.12.003.
[12] Lima, M., Coelho, C., Veloso-Gomes, F., & Roebeling, P. (2020). An integrated physical and cost-benefit approach to assess groins as a coastal erosion mitigation strategy. Coastal Engineering, 156, 103614. doi:10.1016/j.coastaleng.2019.103614.
[13] Saengsupavanich, C., Rif'atin, H. Q., Magdalena, I., & Ariffin, E. H. (2024). A systematic review of jetty-induced downdrift coastal erosion management. Regional Studies in Marine Science, 74, 103523. doi:10.1016/j.rsma.2024.103523.
[14] Shi, L., Liu, W., Zhou, C., & Cai, Y. (2024). A structure-decomposition approach for dynamic analysis of sheet-pile groins subjected to tidal bores. Ocean Engineering, 299, 117322. doi:10.1016/j.oceaneng.2024.117322.
[15] Shokrian Hajibehzad, M., Shafai Bejestan, M., Ferro, V., & Avarand, R. (2022). Mean flow, secondary currents and bed shear stress at a 180-degree laboratory bend with and without enhanced permeable groins as an Eco-friendly river structure. Journal of Hydro-Environment Research, 44, 12–22. doi:10.1016/j.jher.2022.07.004.
[16] Wu, T., Zhang, Y., Sun, H., Galindo, R., Wu, W., & Cai, Y. (2023). Dynamic response of sheet"’pile groin under tidal bore considering pile"’pile mutual interaction and hydrodynamic pressure. Soil Dynamics and Earthquake Engineering, 164, 107568. doi:10.1016/j.soildyn.2022.107568.
[17] Zhang, R., & Stive, M. J. F. (2019). Numerical modelling of hydrodynamics of permeable pile groins using SWASH. Coastal Engineering, 153, 103558. doi:10.1016/j.coastaleng.2019.103558.
[18] Heikal, E. M., Koraim, A. S., Rafea, A. A., & Elbagory, I. A. (2023). The effect of groins characteristic on sandy beach stability. Egyptian Journal of Aquatic Research, 49(3), 303–312. doi:10.1016/j.ejar.2023.04.005.
[19] Abdel-Mawla, S., & Khaled, M. (2002). Application of Permeable Groins on Tourist Shore Protection. Ocean Wave Measurement and Analysis (2001), 1735–1744. doi:10.1061/40604(273)175.
[20] Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident sea waves: 1. Journal of Geophysical Research, 75(33), 6778–6789. doi:10.1029/jc075i033p06778.
[21] Longuet-Higgins, M. S., & Stewart, R. w. (1964). Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Research and Oceanographic Abstracts, 11(4), 529–562. doi:10.1016/0011-7471(64)90001-4.
[22] Triatmodjo, B. (1999). Coastal Engineering. Penerbit Beta Offset, Yogyakarta, Indonesia. (In Indonesian).
[23] Meilistya, R.R.I., Sugianto, D.N., & Indrayanti. E. (2012). Longshore Current Study Due to the Influence of Wave Transformation in Semarang Waters. Jurnal Oseanografi, 1(2), 128-138.
[24] Komar, P. D., & Inman, D. L. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914–5927. doi.10.1029/jc075i030p05914.
[25] Larson, M., & Kraus, N. C. (1991). Numerical Model of Longshore Current for Bar and Trough Beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(4), 326–347. doi:10.1061/(asce)0733-950x(1991)117:4(326).
[26] Sabatier, F. (2007). U.S. Army Corps of Engineers, Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. Méditerranée, 108, 146. doi:10.4000/mediterranee.201.
[27] Prandtl, L. (1952). Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjects. Hafner Publishing Company, New York, United States.
[28] Bretschneider, C. L. (1954). Field investigations of wave energy loss in shallow water ocean waves. Beach Erosion Board, Engineer Research and Development Center, Vicksburg, United States.
[29] Miller, R. L. (1968). Experimental determination of run-up of undular and fully developed bores. Journal of Geophysical Research, 73(14), 4497–4510. doi:10.1029/jb073i014p04497.
[30] Raudkivi, A. J. (1996). Permeable Pile Groins. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(6), 267–272. doi:10.1061/(asce)0733-950x(1996)122:6(267).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
