Evaluating Axial Strength of Cold-formed C-Section Steel Columns Filled with Green High-performance Concrete
Vol. 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Construction and Design"
Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Construction and Design"
Downloads
Doi: 10.28991/CEJ-SP2024-010-014
Full Text: PDF
Jasim, A. M. D. A., Wong, L. S., Al-Zand, A. W., & Kong, S. Y. (2024). Evaluating Axial Strength of Cold-formed C-Section Steel Columns Filled with Green High-performance Concrete. Civil Engineering Journal, 10, 271–290. https://doi.org/10.28991/CEJ-SP2024-010-014
[1] Zong, Z. H., Jaishi, B., Ge, J. P., & Ren, W. X. (2005). Dynamic analysis of a half-through concrete-filled steel tubular arch bridge. Engineering Structures, 27(1), 3–15. doi:10.1016/j.engstruct.2004.08.007.
[2] Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. doi:10.1016/j.jcsr.2014.04.016.
[3] Wu, D., Gao, W., Feng, J., & Luo, K. (2016). Structural behaviour evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects. Composites Part B: Engineering, 86, 261–272. doi:10.1016/j.compositesb.2015.10.004.
[4] Gao, J., Su, J., Xia, Y., & Chen, B. (2014). Experimental study of concrete-filled steel tubular arches with corrugated steel webs. Advanced Steel Construction, 10(1), 99–115. doi:10.18057/ijasc.2014.10.1.7.
[5] Elchalakani, M., Zhao, X. L., & Grzebieta, R. H. (2001). Concrete-filled circular steel tubes subjected to pure bending. Journal of Constructional Steel Research, 57(11), 1141–1168. doi:10.1016/S0143-974X(01)00035-9.
[6] Ren, Q. X., Han, L. H., Lam, D., & Li, W. (2014). Tests on elliptical concrete filled steel tubular (CFST) beams and columns. Journal of Constructional Steel Research, 99, 149–160. doi:10.1016/j.jcsr.2014.03.010.
[7] Wang, R., Han, L. H., Nie, J. G., & Zhao, X. L. (2014). Flexural performance of rectangular CFST members. Thin-Walled Structures, 79, 154–165. doi:10.1016/j.tws.2014.02.015.
[8] Zhang, Y. B., Han, L. H., Zhou, K., & Yang, S. (2019). Mechanical performance of hexagonal multi-cell concrete-filled steel tubular (CFST) stub columns under axial compression. Thin-Walled Structures, 134, 71–83. doi:10.1016/j.tws.2018.09.027.
[9] Javed, M. F., Sulong, N. H. R., Memon, S. A., Rehman, S. K. U., & Khan, N. B. (2017). FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete. Thin-Walled Structures, 119, 470–481. doi:10.1016/j.tws.2017.06.025.
[10] Su, S., Li, X., Wang, T., & Zhu, Y. (2016). A comparative study of environmental performance between CFST and RC columns under combinations of compression and bending. Journal of Cleaner Production, 137, 10–20. doi:10.1016/j.jclepro.2016.07.043.
[11] Saadeh, M., & Irshidat, M. R. (2024). Recent advances in concrete-filled fiber-reinforced polymer tubes: a systematic review and future directions. Innovative Infrastructure Solutions, 9(11), 406. doi:10.1007/s41062-024-01722-z.
[12] Senthilkumar, R., Karunakaran, P., & Chandru, U. (2023). Progress and challenges in double skin steel–concrete composite walls: a review. Innovative Infrastructure Solutions, 8(1), 32. doi:10.1007/s41062-022-00973-y.
[13] Shen, Y., & Tu, Y. (2021). Flexural strength evaluation of multi-cell composite T-shaped concrete-filled steel tubular beams. Materials, 14(11), 2838. doi:10.3390/ma14112838.
[14] Shen, Y., Tu, Y., & Huang, W. (2022). Flexural Strength Evaluation of Multi-Cell Composite L-Shaped Concrete-Filled Steel Tubular Beams. Buildings, 12(1), 39. doi:10.3390/buildings12010039.
[15] Jasim Hilo, S., Wan Badaruzzaman, W. H., Osman, S. A., & Al Zand, A. W. (2015). Axial Load Behavior of Acomposite Wall Strengthened with an Embedded Octagon Cold-Formed Steel. Applied Mechanics and Materials, 754–755, 437–441. doi:10.4028/www.scientific.net/amm.754-755.437.
[16] Al-Shaikhli, M. S., Badaruzzaman, W. H. W., & Al Zand, A. W. (2022). Experimental and numerical study on the PSSDB system as two-way floor units. Steel and Composite Structures, 42(1), 33–48. doi:10.12989/scs.2022.42.1.033.
[17] Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G. M., & Lim, J. B. P. (2024). Buckling resistance of axially loaded cold-formed steel built-up stiffened box sections through experimental testing and finite element analysis. Engineering Structures, 302, 117379. doi:10.1016/j.engstruct.2023.117379.
[18] He, Z., Peng, S., Zhou, X., Li, Z., Yang, G., & Zhang, Z. (2024). Design recommendation of cold-formed steel built-up sections under concentric and eccentric compression. Journal of Constructional Steel Research, 212, 108255. doi:10.1016/j.jcsr.2023.108255.
[19] Yang, J., Luo, K., Wang, W., Shi, Y., & Li, H. (2024). Axial compressive behavior of cold-formed steel built-up box-shape columns with longitudinal stiffeners. Journal of Constructional Steel Research, 212, 108274. doi:10.1016/j.jcsr.2023.108274.
[20] Yılmaz, Y., Öztürk, F., & Demir, S. (2024). Buckling behavior of cold-formed steel sigma and lipped channel section beam-columns: Experimental and numerical investigation. Journal of Constructional Steel Research, 214, 108456. doi:10.1016/j.jcsr.2024.108456.
[21] Kumar, N., & Sahoo, D. R. (2016). Optimization of lip length and aspect ratio of thin channel sections under minor axes bending. Thin-Walled Structures, 100, 158–169. doi:10.1016/j.tws.2015.12.015.
[22] Adil Dar, M., Subramanian, N., Anbarasu, M., Dar, A. R., & Lim, J. B. P. (2018). Structural performance of cold-formed steel composite beams. Steel and Composite Structures, 27(5), 545–554. doi:10.12989/scs.2018.27.5.545.
[23] Al Zand, A. W., Alghaaeb, M. F., Liejy, M. C., Mutalib, A. A., & Al-Ameri, R. (2022). Stiffening Performance of Cold-Formed C-Section Beam Filled with Lightweight-Recycled Concrete Mixture. Materials, 15(9), 2982. doi:10.3390/ma15092982.
[24] Al Zand, A. W., Badaruzzaman, W. H. W., Mutalib, A. A., & Hilo, S. J. (2018). Flexural Behavior of CFST Beams Partially Strengthened with Unidirectional CFRP Sheets: Experimental and Theoretical Study. Journal of Composites for Construction, 22(4), 4018018. doi:10.1061/(asce)cc.1943-5614.0000852.
[25] Al Zand, A. W., Ali, M. M., Al-Ameri, R., Badaruzzaman, W. H. W., Tawfeeq, W. M., Hosseinpour, E., & Yaseen, Z. M. (2021). Flexural strength of internally stiffened tubular steel beam filled with recycled concrete materials. Materials, 14(21), 6334. doi:10.3390/ma14216334.
[26] Ahmed, W., & Lim, C. W. (2021). Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: A review. Journal of Cleaner Production, 279, 279. doi:10.1016/j.jclepro.2020.123832.
[27] Liu, Z., Lu, Y., Li, S., Zong, S., & Yi, S. (2020). Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. Journal of Cleaner Production, 274, 274. doi:10.1016/j.jclepro.2020.122724.
[28] Fahmy, M. F. M., & Idriss, L. K. (2019). Flexural behavior of large scale semi-precast reinforced concrete T-beams made of natural and recycled aggregate concrete. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109525.
[29] Zhang, H., Geng, Y., Wang, Y. Y., & Wang, Q. (2020). Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate. Engineering Structures, 212, 212. doi:10.1016/j.engstruct.2020.110464.
[30] Yang, Y. F., & Han, L. H. (2006). Experimental behaviour of recycled aggregate concrete filled steel tubular columns. Journal of Constructional Steel Research, 62(12), 1310–1324. doi:10.1016/j.jcsr.2006.02.010.
[31] Yang, Y. F., & Man, L. H. (2006). Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel and Composite Structures, 6(3), 257–284. doi:10.12989/scs.2006.6.3.257.
[32] Yang, Y. F., & Zhu, L. T. (2009). Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading. Steel and Composite Structures, 9(1), 19–38. doi:10.12989/scs.2009.9.1.019.
[33] Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, 1149. doi:10.1016/j.cscm.2022.e01149.
[34] Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70, 1063127. doi:10.1016/j.jobe.2023.106327.
[35] Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 278. doi:10.1016/j.conbuildmat.2021.122400.
[36] Abeysinghe, S., Gunasekara, C., Bandara, C., Nguyen, K., Dissanayake, R., & Mendis, P. (2021). Engineering performance of concrete incorporated with recycled high-density polyethylene (HDPE)”A systematic review. Polymers, 13(11), 1885. doi:10.3390/polym13111885.
[37] Tamrin, & Nurdiana, J. (2021). The effect of recycled HDPE plastic additions on concrete performance. Recycling, 6(1), 1–19. doi:10.3390/recycling6010018.
[38] Karthika, R. B., Vidyapriya, V., Nandhini Sri, K. V., Merlin Grace Beaula, K., Harini, R., & Sriram, M. (2020). Experimental study on lightweight concrete using pumice aggregate. Materials Today: Proceedings, 43, 1606–1613. doi:10.1016/j.matpr.2020.09.762.
[39] Kurt, M., Kotan, T., GüL, M. S., GüL, R., & Aydin, A. C. (2016). The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana - Academy Proceedings in Engineering Sciences, 41(2), 253–264. doi:10.1007/s12046-016-0462-2.
[40] Metwally, I. M. (2007). Investigations on the performance of concrete made with blended finely milled waste glass. Advances in Structural Engineering, 10(1), 47–53. doi:10.1260/136943307780150823.
[41] Yu, C. Q., Tong, J. Z., & Tong, G. S. (2021). Behavior and design of slender concrete-filled wide rectangular steel tubular columns under axial compression. Structures, 33, 3137–3146. doi:10.1016/j.istruc.2021.06.065.
[42] Ravi Kumar B. S., Chandan M. B., Dayananda, N. S., Sunil Kumar, M. M., & Akarsh H. R. (2017). An Experimental Study on Lightweight Concrete by Partially Replacing of Normal Coarse Aggregate by Pumice Stone. International Journal for Scientific Research and Development, 5(2), 1982–1985.
[43] Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27. doi:10.1016/j.jcsr.2017.03.003.
[44] Al Zand, A. W., Wan Badaruzzaman, W. H., Ali, M. M., Hasan, Q. A., & Al-Shaikhli, M. S. (2020). Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel and Composite Structures, 34(1), 123–139. doi:10.12989/scs.2020.34.1.123.
[45] Lu, Y., Zhou, T., Li, W., & Wu, H. (2017). Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns. Thin-Walled Structures, 112, 125–139. doi:10.1016/j.tws.2016.12.011.
[46] Rahnavard, R., Craveiro, H. D., Lopes, M., Simíµes, R. A., Laím, L., & Rebelo, C. (2022). Concrete-filled cold-formed steel (CF-CFS) built-up columns under compression: Test and design. Thin-Walled Structures, 179, 109603. doi:10.1016/j.tws.2022.109603.
[2] Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. doi:10.1016/j.jcsr.2014.04.016.
[3] Wu, D., Gao, W., Feng, J., & Luo, K. (2016). Structural behaviour evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects. Composites Part B: Engineering, 86, 261–272. doi:10.1016/j.compositesb.2015.10.004.
[4] Gao, J., Su, J., Xia, Y., & Chen, B. (2014). Experimental study of concrete-filled steel tubular arches with corrugated steel webs. Advanced Steel Construction, 10(1), 99–115. doi:10.18057/ijasc.2014.10.1.7.
[5] Elchalakani, M., Zhao, X. L., & Grzebieta, R. H. (2001). Concrete-filled circular steel tubes subjected to pure bending. Journal of Constructional Steel Research, 57(11), 1141–1168. doi:10.1016/S0143-974X(01)00035-9.
[6] Ren, Q. X., Han, L. H., Lam, D., & Li, W. (2014). Tests on elliptical concrete filled steel tubular (CFST) beams and columns. Journal of Constructional Steel Research, 99, 149–160. doi:10.1016/j.jcsr.2014.03.010.
[7] Wang, R., Han, L. H., Nie, J. G., & Zhao, X. L. (2014). Flexural performance of rectangular CFST members. Thin-Walled Structures, 79, 154–165. doi:10.1016/j.tws.2014.02.015.
[8] Zhang, Y. B., Han, L. H., Zhou, K., & Yang, S. (2019). Mechanical performance of hexagonal multi-cell concrete-filled steel tubular (CFST) stub columns under axial compression. Thin-Walled Structures, 134, 71–83. doi:10.1016/j.tws.2018.09.027.
[9] Javed, M. F., Sulong, N. H. R., Memon, S. A., Rehman, S. K. U., & Khan, N. B. (2017). FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete. Thin-Walled Structures, 119, 470–481. doi:10.1016/j.tws.2017.06.025.
[10] Su, S., Li, X., Wang, T., & Zhu, Y. (2016). A comparative study of environmental performance between CFST and RC columns under combinations of compression and bending. Journal of Cleaner Production, 137, 10–20. doi:10.1016/j.jclepro.2016.07.043.
[11] Saadeh, M., & Irshidat, M. R. (2024). Recent advances in concrete-filled fiber-reinforced polymer tubes: a systematic review and future directions. Innovative Infrastructure Solutions, 9(11), 406. doi:10.1007/s41062-024-01722-z.
[12] Senthilkumar, R., Karunakaran, P., & Chandru, U. (2023). Progress and challenges in double skin steel–concrete composite walls: a review. Innovative Infrastructure Solutions, 8(1), 32. doi:10.1007/s41062-022-00973-y.
[13] Shen, Y., & Tu, Y. (2021). Flexural strength evaluation of multi-cell composite T-shaped concrete-filled steel tubular beams. Materials, 14(11), 2838. doi:10.3390/ma14112838.
[14] Shen, Y., Tu, Y., & Huang, W. (2022). Flexural Strength Evaluation of Multi-Cell Composite L-Shaped Concrete-Filled Steel Tubular Beams. Buildings, 12(1), 39. doi:10.3390/buildings12010039.
[15] Jasim Hilo, S., Wan Badaruzzaman, W. H., Osman, S. A., & Al Zand, A. W. (2015). Axial Load Behavior of Acomposite Wall Strengthened with an Embedded Octagon Cold-Formed Steel. Applied Mechanics and Materials, 754–755, 437–441. doi:10.4028/www.scientific.net/amm.754-755.437.
[16] Al-Shaikhli, M. S., Badaruzzaman, W. H. W., & Al Zand, A. W. (2022). Experimental and numerical study on the PSSDB system as two-way floor units. Steel and Composite Structures, 42(1), 33–48. doi:10.12989/scs.2022.42.1.033.
[17] Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G. M., & Lim, J. B. P. (2024). Buckling resistance of axially loaded cold-formed steel built-up stiffened box sections through experimental testing and finite element analysis. Engineering Structures, 302, 117379. doi:10.1016/j.engstruct.2023.117379.
[18] He, Z., Peng, S., Zhou, X., Li, Z., Yang, G., & Zhang, Z. (2024). Design recommendation of cold-formed steel built-up sections under concentric and eccentric compression. Journal of Constructional Steel Research, 212, 108255. doi:10.1016/j.jcsr.2023.108255.
[19] Yang, J., Luo, K., Wang, W., Shi, Y., & Li, H. (2024). Axial compressive behavior of cold-formed steel built-up box-shape columns with longitudinal stiffeners. Journal of Constructional Steel Research, 212, 108274. doi:10.1016/j.jcsr.2023.108274.
[20] Yılmaz, Y., Öztürk, F., & Demir, S. (2024). Buckling behavior of cold-formed steel sigma and lipped channel section beam-columns: Experimental and numerical investigation. Journal of Constructional Steel Research, 214, 108456. doi:10.1016/j.jcsr.2024.108456.
[21] Kumar, N., & Sahoo, D. R. (2016). Optimization of lip length and aspect ratio of thin channel sections under minor axes bending. Thin-Walled Structures, 100, 158–169. doi:10.1016/j.tws.2015.12.015.
[22] Adil Dar, M., Subramanian, N., Anbarasu, M., Dar, A. R., & Lim, J. B. P. (2018). Structural performance of cold-formed steel composite beams. Steel and Composite Structures, 27(5), 545–554. doi:10.12989/scs.2018.27.5.545.
[23] Al Zand, A. W., Alghaaeb, M. F., Liejy, M. C., Mutalib, A. A., & Al-Ameri, R. (2022). Stiffening Performance of Cold-Formed C-Section Beam Filled with Lightweight-Recycled Concrete Mixture. Materials, 15(9), 2982. doi:10.3390/ma15092982.
[24] Al Zand, A. W., Badaruzzaman, W. H. W., Mutalib, A. A., & Hilo, S. J. (2018). Flexural Behavior of CFST Beams Partially Strengthened with Unidirectional CFRP Sheets: Experimental and Theoretical Study. Journal of Composites for Construction, 22(4), 4018018. doi:10.1061/(asce)cc.1943-5614.0000852.
[25] Al Zand, A. W., Ali, M. M., Al-Ameri, R., Badaruzzaman, W. H. W., Tawfeeq, W. M., Hosseinpour, E., & Yaseen, Z. M. (2021). Flexural strength of internally stiffened tubular steel beam filled with recycled concrete materials. Materials, 14(21), 6334. doi:10.3390/ma14216334.
[26] Ahmed, W., & Lim, C. W. (2021). Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: A review. Journal of Cleaner Production, 279, 279. doi:10.1016/j.jclepro.2020.123832.
[27] Liu, Z., Lu, Y., Li, S., Zong, S., & Yi, S. (2020). Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. Journal of Cleaner Production, 274, 274. doi:10.1016/j.jclepro.2020.122724.
[28] Fahmy, M. F. M., & Idriss, L. K. (2019). Flexural behavior of large scale semi-precast reinforced concrete T-beams made of natural and recycled aggregate concrete. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109525.
[29] Zhang, H., Geng, Y., Wang, Y. Y., & Wang, Q. (2020). Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate. Engineering Structures, 212, 212. doi:10.1016/j.engstruct.2020.110464.
[30] Yang, Y. F., & Han, L. H. (2006). Experimental behaviour of recycled aggregate concrete filled steel tubular columns. Journal of Constructional Steel Research, 62(12), 1310–1324. doi:10.1016/j.jcsr.2006.02.010.
[31] Yang, Y. F., & Man, L. H. (2006). Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel and Composite Structures, 6(3), 257–284. doi:10.12989/scs.2006.6.3.257.
[32] Yang, Y. F., & Zhu, L. T. (2009). Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading. Steel and Composite Structures, 9(1), 19–38. doi:10.12989/scs.2009.9.1.019.
[33] Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, 1149. doi:10.1016/j.cscm.2022.e01149.
[34] Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70, 1063127. doi:10.1016/j.jobe.2023.106327.
[35] Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 278. doi:10.1016/j.conbuildmat.2021.122400.
[36] Abeysinghe, S., Gunasekara, C., Bandara, C., Nguyen, K., Dissanayake, R., & Mendis, P. (2021). Engineering performance of concrete incorporated with recycled high-density polyethylene (HDPE)”A systematic review. Polymers, 13(11), 1885. doi:10.3390/polym13111885.
[37] Tamrin, & Nurdiana, J. (2021). The effect of recycled HDPE plastic additions on concrete performance. Recycling, 6(1), 1–19. doi:10.3390/recycling6010018.
[38] Karthika, R. B., Vidyapriya, V., Nandhini Sri, K. V., Merlin Grace Beaula, K., Harini, R., & Sriram, M. (2020). Experimental study on lightweight concrete using pumice aggregate. Materials Today: Proceedings, 43, 1606–1613. doi:10.1016/j.matpr.2020.09.762.
[39] Kurt, M., Kotan, T., GüL, M. S., GüL, R., & Aydin, A. C. (2016). The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana - Academy Proceedings in Engineering Sciences, 41(2), 253–264. doi:10.1007/s12046-016-0462-2.
[40] Metwally, I. M. (2007). Investigations on the performance of concrete made with blended finely milled waste glass. Advances in Structural Engineering, 10(1), 47–53. doi:10.1260/136943307780150823.
[41] Yu, C. Q., Tong, J. Z., & Tong, G. S. (2021). Behavior and design of slender concrete-filled wide rectangular steel tubular columns under axial compression. Structures, 33, 3137–3146. doi:10.1016/j.istruc.2021.06.065.
[42] Ravi Kumar B. S., Chandan M. B., Dayananda, N. S., Sunil Kumar, M. M., & Akarsh H. R. (2017). An Experimental Study on Lightweight Concrete by Partially Replacing of Normal Coarse Aggregate by Pumice Stone. International Journal for Scientific Research and Development, 5(2), 1982–1985.
[43] Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27. doi:10.1016/j.jcsr.2017.03.003.
[44] Al Zand, A. W., Wan Badaruzzaman, W. H., Ali, M. M., Hasan, Q. A., & Al-Shaikhli, M. S. (2020). Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel and Composite Structures, 34(1), 123–139. doi:10.12989/scs.2020.34.1.123.
[45] Lu, Y., Zhou, T., Li, W., & Wu, H. (2017). Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns. Thin-Walled Structures, 112, 125–139. doi:10.1016/j.tws.2016.12.011.
[46] Rahnavard, R., Craveiro, H. D., Lopes, M., Simíµes, R. A., Laím, L., & Rebelo, C. (2022). Concrete-filled cold-formed steel (CF-CFS) built-up columns under compression: Test and design. Thin-Walled Structures, 179, 109603. doi:10.1016/j.tws.2022.109603.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
