Nonlinear Inelastic Local Buckling Behavior of Steel Columns Subjected to Axial Compression
Downloads
This study develops a displacement-based finite element approach using one-element modeling to analyze the second-order inelastic local buckling of steel columns under axial compression. To account for local buckling, two new stress-strain relationships are proposed for steel using an energy method and assumptions from previous studies for both compact and slender cross-sections. Stress-strain curves of post-buckling regimes are modeled as nonlinear curves. Both geometric and material nonlinearity are considered in the buckling analysis. The effects of geometric nonlinearity are traced through stability functions. The tangent stiffness of steel members is continuously updated during the nonlinear analysis by updating the fiber behavior at monitoring cross-sections using the Gauss-Lobatto integration rule. The proposed stress-strain relationships accurately predict the ultimate strength, elastic, and inelastic local buckling behaviors of steel columns under axial compression, compared with ABAQUS and previous studies. The model accurately predicts elastic, inelastic, and ultimate strength behaviors, with post-buckling responses closely matching ABAQUS results (e.g. 0.881 (proposed with residual stress), 1.008 (proposed without residual stress) vs. 0.948 (ABAQUS) load ratio for HB3 specimen). This approach offers significant computational efficiency (~1.0 sec vs. 20–30 min for ABAQUS) and introduces adjustable constitutive models, enhancing practical design applications for steel structures. This study proves that the effects of residual stress on the local buckling cannot be ignored in the case of slender sections, since the differences of the ultimate load (with and without the initial residual stress) are equal to 63.3% for the HI4 specimen and 43.2% for the HS40-SH(B) specimen.
Downloads
[1] Zhang, J., Su, A., & Yang, H. (2025). Local buckling behavior and bearing capacity of cold-formed S700 high strength steel built-up box-section stub columns. Thin-Walled Structures, 216. doi:10.1016/j.tws.2025.113590.
[2] Schreiber, P., & Mittelstedt, C. (2025). Experimental and analytical investigation of the local buckling behaviour of unsymmetrically laminated thin-walled beams. Composite Structures, 363. doi:10.1016/j.compstruct.2025.119073.
[3] Chen, S., Liu, J.-Z., & Chan, T.-M. (2024). Local Buckling Behavior of Hybrid Steel I-Sections under Uniform Bending: Moment-Rotation Characteristic. Journal of Structural Engineering, 150(11), 04024162. doi:10.1061/jsendh.steng-13401.
[4] Xue, Q., Xu, S., Li, A., & Wang, Y. (2024). Local–overall buckling behavior of corroded intermediate compression-bending H-section steel columns. Engineering Structures, 308. doi:10.1016/j.engstruct.2024.118025.
[5] Wu, K., Zhou, X., Huang, C., Xing, Z., Lu, Z., & Quan, K. (2025). Stability of prestressed stayed I-section steel columns: Zones-based and intelligent design considering local buckling. Thin-Walled Structures, 213, 113269. doi:10.1016/j.tws.2025.113269.
[6] Zhong, Y., Jiang, K., Chen, M. T., Su, A., & Zhao, O. (2025). Local buckling of stainless steel stub columns with novel octagonal hollow sections. Engineering Structures, 338. doi:10.1016/j.engstruct.2025.120512.
[7] Han, X., Jia, C., Hu, Q., Liu, C., & Xiang, T. (2025). Local-global buckling behaviours of axially compressive welded I-section steel columns with local corrosion. Thin-Walled Structures, 212, 113239. doi:10.1016/j.tws.2025.113239.
[8] Yuan, W. B., Shen, Y. T., Yu, N. T., & Bao, Z. S. (2019). An Analytical Solution of Local–Global Interaction Buckling of Cold-Formed Steel Channel-Section Columns. International Journal of Steel Structures, 19(5), 1578-1591. doi:10.1007/s13296-019-00232-4.
[9] Kolwankar, S., Kanvinde, A., Kenawy, M., Lignos, D., & Kunnath, S. (2020). Simulating Cyclic Local Buckling–Induced Softening in Steel Beam-Columns Using a Nonlocal Material Model in Displacement-Based Fiber Elements. Journal of Structural Engineering, 146(1), 04019174. doi:10.1061/(asce)st.1943-541x.0002457.
[10] Thai, H. T., Uy, B., & Khan, M. (2015). A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression. Journal of Constructional Steel Research, 111, 57–69. doi:10.1016/j.jcsr.2015.04.002.
[11] Maity, A., Kanvinde, A., Heredia Rosa, D. I., de Castro e Sousa, A., & Lignos, D. G. (2025). Simulating Interactive Buckling in Steel Members Using a Torsional Fiber Element Integrated with a Multiaxial Local Buckling Constitutive Model. Journal of Structural Engineering, 151(9), 04025124. doi:10.1061/jsendh.steng-14023.
[12] Heredia Rosa, D. I., de Castro e Sousa, A., Lignos, D. G., Maity, A., & Kanvinde, A. (2025). A Multiaxial Plasticity Model with Softening for Simulating Inelastic Cyclic Local Buckling in Steel Beam Columns Using Fiber Elements. Journal of Structural Engineering, 151(7), 04025088. doi:10.1061/jsendh.steng-14262.
[13] Feng, R., Chen, L., Chen, Z., Chen, B., Roy, K., & Lim, J. B. P. (2021). Nonlinear behaviour and design of stainless steel hybrid tubular K-joints with SHS-to-CHS. Journal of Constructional Steel Research, 183. doi:10.1016/j.jcsr.2021.106704.
[14] Roy, K., Ho Lau, H., Ahmed, A. M. M., & Lim, J. B. P. (2021). Nonlinear behavior of cold-formed stainless steel built-up box sections under axial compression. Structures, 30, 390–408. doi:10.1016/j.istruc.2020.12.058.
[15] Ananthi, G. B. G., Roy, K., & Lim, J. B. P. (2021). Tests and Finite Element Modelling of Cold-Formed Steel Zed and Hat Section Columns Under Axial Compression. International Journal of Steel Structures, 21(4), 1305–1331. doi:10.1007/s13296-021-00504-y.
[16] Fang, Z., Roy, K., Chen, B., Xie, Z., & Lim, J. B. P. (2022). Local and distortional buckling behaviour of aluminium alloy back-to-back channels with web holes under axial compression. Journal of Building Engineering, 47. doi:10.1016/j.jobe.2021.103837.
[17] ABAQUS. (2014). Analysis User’s Manual, Version 6.14. Dassault Systemes Simulia, Inc., Waltham, United States.
[18] Uy, B. (1998). Local and post-local buckling of concrete filled steel welded box columns. Journal of Constructional Steel Research, 47(1–2), 47–72. doi:10.1016/S0143-974X(98)80102-8.
[19] Kim, S. E., Lee, J., & Park, J. S. (2003). 3-D second-order plastic-hinge analysis accounting for local buckling. Engineering Structures, 25(1), 81–90. doi:10.1016/S0141-0296(02)00122-0.
[20] Kim, S. E., & Lee, J. (2002). Improved refined plastic-hinge analysis accounting for lateral torsional buckling. Journal of Constructional Steel Research, 58(11), 1431–1453. doi:10.1016/S0143-974X(01)00068-2.
[21] Chan, S. L., Kitipornchai, S., & Al-Bermani, F. G. A. (1991). Elasto-Plastic Analysis of Box-Beam-Columns Including Local Buckling Effects. Journal of Structural Engineering, 117(7), 1946–1962. doi:10.1061/(asce)0733-9445(1991)117:7(1946).
[22] Skallerud, B., & Amdahl, J. (1998). Modelling methodologies with beam finite elements for collapse analysis of tubular members/cylindrical shells. Proceedings of the 2nd International Conference on Thin-Walled Structures, 2–4 December, 1998, Singapore.
[23] Skallerud, B., Amdahl, J., Johansen, A., & Eide, O. I. (1996). Cyclic capacity of tubular beam-columns with local buckling: numerical and experimental studies. 15th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 1996), 16-21 June, 1996, Florence, Italy.
[24] Neuenhofer, A., & Filippou, F. C. (1998). Geometrically Nonlinear Flexibility-Based Frame Finite Element. Journal of Structural Engineering, 124(6), 704–711. doi:10.1061/(asce)0733-9445(1998)124:6(704).
[25] De Souza, R. M. (2000). Force-based finite element for large displacement inelastic analysis of frames. Ph.D. Thesis, University of California, Berkeley, United States.
[26] Yang, Y. Bin, & Shieh, M. S. (1990). Solution method for nonlinear problems with multiple critical points. AIAA Journal, 28(12), 2110–2116. doi:10.2514/3.10529.
[27] Bryan, G. H. (1890). On the stability of a plane plate under thrusts in its own plane, with applications to the buckling of the sides of a ship. Proceedings of the London Mathematical Society, s1-22(1), 54–67. doi:10.1112/plms/s1-22.1.54.
[28] Lee, J. H., & Mahendran, M. (2018). Local Buckling Behaviour and Design of Cold-Formed Steel Compression Members at Elevated Temperatures. Thin-Walled Structures, 315–322, CRC Press, Boca Raton, United States. doi:10.1201/9781351077309-34.
[29] Mursi, M., & Uy, B. (2004). Strength of slender concrete filled high strength steel box columns. Journal of Constructional Steel Research, 60(12), 1825–1848. doi:10.1016/j.jcsr.2004.05.002.
[30] Chen, W.F., & Lui, E.M. (1987). Structural Stability: Theory and Implementation, Elsevier, New York, United States.
[31] Nguyen, P. C., & Kim, S. E. (2013). Nonlinear elastic dynamic analysis of space steel frames with semi-rigid connections. Journal of Constructional Steel Research, 84, 72–81. doi:10.1016/j.jcsr.2013.02.004.
[32] Nguyen, P. C., & Kim, S. E. (2014). Nonlinear inelastic time-history analysis of three-dimensional semi-rigid steel frames. Journal of Constructional Steel Research, 101, 192–206. doi:10.1016/j.jcsr.2014.05.009.
[33] Nguyen, P. C., & Kim, S. E. (2014). An advanced analysis method for three-dimensional steel frames with semi-rigid connections. Finite Elements in Analysis and Design, 80, 23–32. doi:10.1016/j.finel.2013.11.004.
[34] Nguyen, P. C., & Kim, S. E. (2015). Second-order spread-of-plasticity approach for nonlinear time-history analysis of space semi-rigid steel frames. Finite Elements in Analysis and Design, 105, 1–15. doi:10.1016/j.finel.2015.06.006.
[35] Nguyen, P. C., & Kim, S. E. (2017). Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames. International Journal of Non-Linear Mechanics, 89, 151–167. doi:10.1016/j.ijnonlinmec.2016.12.011.
[36] Nguyen, P. C., & Kim, S. E. (2018). A new improved fiber plastic hinge method accounting for lateral-torsional buckling of 3D steel frames. Thin-Walled Structures, 127, 666–675. doi:10.1016/j.tws.2017.12.031.
[37] Michels, H. H. (1963). Abscissas and Weight Coefficients for Lobatto Quadrature. Mathematics of Computation, 17(83), 237. doi:10.2307/2003841.
[38] Kitipornchai, S., & Wong‐Chung, A. D. (1987). Inelastic Buckling of Welded Monosymmetric I-Beams. Journal of Structural Engineering, 113(4), 740–756. doi:10.1061/(asce)0733-9445(1987)113:4(740).
[39] Uy, B. (2001). Local and Postlocal Buckling of Fabricated Steel and Composite Cross Sections. Journal of Structural Engineering, 127(6), 666–677. doi:10.1061/(asce)0733-9445(2001)127:6(666).
[40] Uy, B., Khan, M., Tao, Z., & Mashiri, F. (2013). Behaviour and design of high strength steel-concrete filled columns. Proceedings of the 2013 world congress on advances in structural engineering and mechanics (ASEM13), 8-12 September, 2013, Jeju, Korea.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














