Seismic Assessment of First and Second Secant Stiffness for the Masonry Infilled RC Frame
Downloads
Doi: 10.28991/CEJ-2025-011-02-05
Full Text: PDF
[2] Raj, P., & Ravula, M. B. (2022). Experimental Investigation on Mechanical Behavior of AAC Block Masonry. IOP Conference Series: Materials Science and Engineering, 1255(1), 012016. doi:10.1088/1757-899x/1255/1/012016.
[3] Zade, N. P., Bhosale, A., Sarkar, P., & Davis, R. (2022). In-Plane Seismic Response of Autoclaved Aerated Concrete Block Masonry-Infilled Reinforced Concrete Frame Building. ACI Structural Journal, 119(2), 45–60. doi:10.14359/51734329.
[4] Furtado, A., Rodrigues, H., & Aríªde, A. (2022). Effect of the Openings on the Seismic Response of an Infilled Reinforced Concrete Structure. Buildings, 12(11), 20. doi:10.3390/buildings12112020.
[5] ÄorÄ‘ević, F., & Marinković, M. (2024). Advanced ANN Regularization-Based Algorithm for Prediction of the Fundamental Period of Masonry Infilled RC Frames. Journal of Big Data, 11, 169. doi:10.1186/s40537-024-01027-z.
[6] Sullivan, T. J., Calvi, G. M., & Priestley, M. J. N. (2004, August). Initial stiffness versus secant stiffness in displacement based design. 13th World Conference of Earthquake Engineering (WCEE), 1-6 August 2004, Vancouver, Canada.
[7] Gaikwad, N. C., Galatage, A. A., & Kulkarni, S. K. (2017). Scaling Of Ground Motions for Performing Incremental Dynamic Analysis of RC Framed Structures. International Journal of Advance Research, Ideas and Innovations in Technology, 3(5), 56–68.
[8] Sivanantham, P., Selvan, S. S., Srinivasan, S. K., Gurupatham, B. G. A., & Roy, K. (2023). Influence of Infill on Reinforced Concrete Frame Resting on Slopes under Lateral Loading. Buildings, 13(2), 289. doi:10.3390/buildings13020289.
[9] Thisovithan, P., Aththanayake, H., Meddage, D. P. P., Ekanayake, I. U., & Rathnayake, U. (2023). A novel explainable AI-based approach to estimate the natural period of vibration of masonry infill reinforced concrete frame structures using different machine learning techniques. Results in Engineering, 19, 101388. doi:10.1016/j.rineng.2023.101388.
[10] Cattari, S., Calderoni, B., Caliò, I., Camata, G., de Miranda, S., Magenes, G., ... & Saetta, A. (2022). Nonlinear modeling of the seismic response of masonry structures: critical review and open issues towards engineering practice. Bulletin of Earthquake Engineering, 20(4), 1939-1997. doi:10.1007/s10518-021-01263-1.
[11] Wang, F. (2023). Experimental Research on Seismic Performance of Masonry-Infilled RC Frames Retrofitted by Using Fabric-Reinforced Cementitious Matrix under In-Plane Cyclic Loading. International Journal of Concrete Structures and Materials, 17(1), 31. doi:10.1186/s40069-023-00594-4.
[12] Blasi, G., De Luca, F., & Aiello, M. A. (2018). Brittle failure in RC masonry infilled frames: The role of infill overstrength. Engineering Structures, 177, 506–518. doi:10.1016/j.engstruct.2018.09.079.
[13] Cai, G., & Su, Q. (2019). Effect of Infills on Seismic Performance of Reinforced Concrete Frame structures”A Full-Scale Experimental Study. Journal of Earthquake Engineering, 23(9), 1531–1559. doi:10.1080/13632469.2017.1387194.
[14] Chen, H., & Bai, J. (2021). Seismic performance evaluation of buckling-restrained braced RC frames considering stiffness and strength requirements and low-cycle fatigue behaviors. Engineering Structures, 239, 112359. doi:10.1016/j.engstruct.2021.112359.
[15] Kurmi, P.L., Kumar, N., & Telang, D. (2024). Effect of Infills with Realistic Openings on the Seismic Performance of Gravity Load-Designed RC Buildings. Technologies for Sustainable Buildings and Infrastructure, SIIOC 2023, Lecture Notes in Civil Engineering, 528, Springer, Singapore. doi:10.1007/978-981-97-4844-0_1.
[16] Liu, J., Scattarreggia, N., & Malomo, D. (2024). Exploring the seismic performance of corroded RC frames with masonry infills. Bulletin of Earthquake Engineering. doi:10.1007/s10518-024-02037-1.
[17] Rai, A., & Joshi, Y. P. (2014). Applications and properties of fibre reinforced concrete. Journal of Engineering Research and Applications, 4(5), 123-131.
[18] Schwarz, S., Hanaor, A., & Yankelevsky, D. Z. (2015). Experimental response of reinforced concrete frames with AAC masonry infill walls to in-plane cyclic loading. Structures, 3, 306-319. doi:10.1016/j.istruc.2015.06.005.
[19] Messaoudi, A., Chebili, R., Mohamed, H., Furtado, A., & Rodrigues, H. (2024). The In-Plane Seismic Response of Infilled Reinforced Concrete Frames Using a Strut Modelling Approach: Validation and Applications. Buildings, 14(7), 1902. doi:10.3390/buildings14071902.
[20] Harris, H. G., & Sabnis, G. (1999). Structural modeling and experimental techniques. CRC Press, Boca Raton, United States. doi:10.1201/9780367802295.
[21] РipoС, T. K., & Strukar, K. (2019). Prediction of the seismic response of multi-storey multi-bay masonry infilled frames using artificial neural networks and a bilinear approximation. Buildings, 9(5), 121. doi:10.3390/buildings9050121.
[22] Kyriakides, M. A., & Billington, S. L. (2014). Cyclic response of nonductile reinforced concrete frames with unreinforced masonry infills retrofitted with engineered cementitious composites. Journal of Structural Engineering, 140(2), 04013046. doi:10.1061/(ASCE)ST.1943-541X.0000833.
[23] Folhento, P., Braz-César, M., & Barros, R. (2021). Cyclic response of a reinforced concrete frame: Comparison of experimental results with different hysteretic models. AIMS Materials Science, 8(6), 917–931. doi:10.3934/MATERSCI.2021056.
[24] Shah, S. A. A., Shahzada, K., Gencturk, B., Ullah, Q. S., Hussain, Z., & Javed, M. (2022). In-plane Quasi-static Cyclic Load Tests on Reinforced Concrete Frame Panels with and without Brick Masonry Infill Walls. Journal of Earthquake Engineering, 26(11), 5592–5616. doi:10.1080/13632469.2021.1884147.
[25] Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the engineering mechanics division, 102(2), 249-263. doi:10.1061/JMCEA3.0002106.
[26] Papia, M., Cavaleri, L., & Fossetti, M. (2003). Infilled frames: Developments in the evaluation of the stiffening effect of infills. Structural Engineering and Mechanics, 16(6), 675–693. doi:10.12989/sem.2003.16.6.675.
[27] Van, T. C., & Lau, T. L. (2020). Experimental Evaluation of Reinforced Concrete Frames with Unreinforced Masonry Infills under Monotonic and Cyclic Loadings. International Journal of Civil Engineering, 19(4), 401–419. doi:10.1007/s40999-020-00576-7.
[28] Teguh, M. (2017). Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loads. Procedia Engineering, 171, 191–200. doi:10.1016/j.proeng.2017.01.326.
[29] Cavaleri, L., Miraglia, N., & Papia, M. (2003). Pumice concrete for structural wall panels. Engineering structures, 25(1), 115-125. doi:10.1016/S0141-0296(02)00123-2.
[30] Caprili, S., Mangini, F., & Salvatore, W. (2015). Evaluation of structural safety and seismic vulnerability of historical masonry buildings: studies and applications in the Tuscany Region. Structural Studies, Repairs and Maintenance of Heritage Architecture XIV, 1, 369–380. doi:10.2495/str150311.
[31] Su, Q., Cai, G., Hani, M., Si Larbi, A., & Tsavdaridis, K. D. (2023). Damage control of the masonry infills in RC frames under cyclic loads: a full-scale test study and numerical analyses. Bulletin of Earthquake Engineering, 21(2), 1017–1045. doi:10.1007/s10518-022-01565-y.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
