Flexural Behaviour of Precast Lightweight Concrete Sandwich Slabs With Demountable Bolted Steel Shear Connectors
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-06
Full Text: PDF
Al-Kerwei, R. H., Osman, S. A., Al-Zand, A. W., & Hanoon, A. N. (2025). Flexural Behaviour of Precast Lightweight Concrete Sandwich Slabs With Demountable Bolted Steel Shear Connectors. Civil Engineering Journal, 11(2), 488–508. https://doi.org/10.28991/CEJ-2025-011-02-06
[1] Einea, A., Salmon, D. C., Fogarasi, G. J., Culp, T. D., & Tadros, M. K. (1991). State-of-the-art of Precast Concrete Sandwich Panels. PCI Journal, 36(6), 78–92. doi:10.15554/pcij.11011991.78.98.
[2] Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2017). Precast concrete sandwich one-way slabs under flexural loading. Engineering Structures, 138, 447–457. doi:10.1016/j.engstruct.2017.02.033.
[3] Alfeehan, A. A., & Sheer, N. M. (2018). Reactive powder concrete sandwich panels with mechanical connection approach. 2018 International Conference on Advance of Sustainable Engineering and Its Application (ICASEA), 121–125. doi:10.1109/icasea.2018.8370968.
[4] Alabduljabbar, H., Alyousef, R., & Amran, M. (2019). Applicable use of lightweight foam concrete composite sandwich panels as a flooring system. Sustainable Construction Materials and Technologies (SCMT), 1, 9–19. doi:10.18552/2019/idscmt5002.
[5] Sumadi, S. R., & Ramli, M. (2008). Development of lightweight ferrocement sandwich panels for modular housing and industrialized building system. Universiti Teknologi Malaysia (UTM), Research Vote, 73311.
[6] Chen, Y., Kang, C., Wu, Y., & Qian, Z. (2022). Bending Performance of Precast Ceramsite-Concrete-Insulated Sandwich Panel with Stainless Steel Shear Connectors. Buildings, 12(10). doi:10.3390/buildings12101640.
[7] Lou, X., Xue, W., Bai, H., Li, Y., & Huang, Q. (2022). Shear behavior of stainless-steel plate connectors for insulated precast concrete sandwich panels. Structures, 44, 1046–1056. doi:10.1016/j.istruc.2022.08.073.
[8] Guerrero, N., Carrillo, J., Herrera, R. I., & Marante, M. E. (2024). Experimental and numerical investigation on the behavior of concrete sandwich slab panel for a structural system. Journal of Building Engineering, 86. doi:10.1016/j.jobe.2024.108930.
[9] Egbon, B., & Tomlinson, D. (2021). Experimental investigation of longitudinal shear transfer in insulated concrete wall panels with notched insulation. Journal of Building Engineering, 43. doi:10.1016/j.jobe.2021.103173.
[10] Huang, J., Jiang, Q., Chong, X., Ye, X., & Wang, D. (2020). Experimental study on precast concrete sandwich panel with cross-shaped GFRP connectors. Magazine of Concrete Research, 72(3), 149–162. doi:10.1680/jmacr.18.00258.
[11] Chen, A., Yossef, M., & Hopkins, P. (2020). A comparative study of different methods to calculate degrees of composite action for insulated concrete sandwich panels. Engineering Structures, 212. doi:10.1016/j.engstruct.2020.110423.
[12] Chen, D., Li, K., Yuan, Z., Cheng, B., & Kang, X. (2022). Shear Behavior of FRP Connectors in Precast Sandwich Insulation Wall Panels. Buildings, 12(8). doi:10.3390/buildings12081095.
[13] Huang, J. Q., & Dai, J. G. (2020). Flexural performance of precast geopolymer concrete sandwich panel enabled by FRP connector. Composite Structures, 248. doi:10.1016/j.compstruct.2020.112563.
[14] Tomlinson, D., & Fam, A. (2015). Flexural behavior of precast concrete sandwich wall panels with basalt FRP and steel reinforcement. PCI Journal, 60(6), 51–71. doi:10.15554/pcij.11012015.51.71.
[15] Liu, X., Wang, X., Yang, T., & Wu, Z. (2022). The Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with BFRP. Buildings, 12(9). doi:10.3390/buildings12091326.
[16] Jiang, H., Guo, Z., Liu, J., & Liu, H. (2018). The Shear Behavior of Precast Concrete Sandwich Panels with W-shaped SGFRP Shear Connectors. KSCE Journal of Civil Engineering, 22(10), 3961–3971. doi:10.1007/s12205-018-0809-9.
[17] Einea, A., David C. Salmon, D. C., Tadros, M. K., & Culp, T. (1994). A New Structurally and Thermally Efficient Precast Sandwich Panel System. PCI Journal, 39(4), 90–101. doi:10.15554/pcij.07011994.90.101.
[18] Henin, E., Morcous, G., & Tadros, M. K. (2014). Precast/Prestressed Concrete Sandwich Panels for Thermally Efficient Floor/Roof Applications. Practice Periodical on Structural Design and Construction, 19(3). doi:10.1061/(asce)sc.1943-5576.0000213.
[19] Choi, K. B., Choi, W. C., Feo, L., Jang, S. J., & Yun, H. Do. (2015). In-plane shear behavior of insulated precast concrete sandwich panels reinforced with corrugated GFRP shear connectors. Composites Part B: Engineering, 79, 419–429. doi:10.1016/j.compositesb.2015.04.056.
[20] Mohamad, N., Khalifa, H., Abdul Samad, A. A., Mendis, P., & Goh, W. I. (2016). Structural performance of recycled aggregate in CSP slab subjected to flexure load. Construction and Building Materials, 115, 669–680. doi:10.1016/j.conbuildmat.2016.04.086.
[21] Zhang, M., Feng, W., Chen, K., & Li, B. (2024). Flexural Behavior of a New Precast Insulation Mortar Sandwich Panel. Applied Sciences, 14(5), 2071. doi:10.3390/app14052071.
[22] Cox, B., Syndergaard, P., Al-Rubaye, S., Pozo-Lora, F. F., Tawadrous, R., & Maguire, M. (2019). Lumped GFRP star connector system for partial composite action in insulated precast concrete sandwich panels. Composite Structures, 229. doi:10.1016/j.compstruct.2019.111465.
[23] Sevil Yaman, T., & Lucier, G. (2023). Shear Transfer Mechanism between CFRP Grid and EPS Rigid Foam Insulation of Precast Concrete Sandwich Panels. Buildings, 13(4). doi:10.3390/buildings13040928.
[24] Shin, D. H., & Kim, H. J. (2020). Composite effects of shear connectors used for lightweight-foamed-concrete sandwich wall panels. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101108.
[25] Huang, J. Q., & Dai, J. G. (2019). Direct shear tests of glass fiber reinforced polymer connectors for use in precast concrete sandwich panels. Composite Structures, 207, 136–147. doi:10.1016/j.compstruct.2018.09.017.
[26] He, Z. Z., Pan, P., Xiao, G. Q., Shen, S. D., & Ren, J. Y. (2022). Test and analysis on axial performances of GFRP restraint connectors for sandwich insulation wall panels. Journal of Building Engineering, 45, 103457. doi:10.1016/j.jobe.2021.103457.
[27] O'Hegarty, R., Kinnane, O., Grimes, M., Newell, J., Clifford, M., & West, R. (2021). Development of thin precast concrete sandwich panels: Challenges and outcomes. Construction and Building Materials, 267, 120981. doi:10.1016/j.conbuildmat.2020.120981.
[28] Tawil, H., Tan, C. G., Ramli Sulong, N. H., Nazri, F. M., Shamsudin, M. F., & Muhamad Bunnori, N. (2024). Optimization of Shear Resistance in Precast Concrete Sandwich Wall Panels Using an S-Type Shear Connector. Buildings, 14(6). doi:10.3390/buildings14061725.
[29] Goudarzi, N., Korany, Y., Adeeb, S., & Cheng, R. (2016). Characterization of the shear behavior of Z-shaped steel plate connectors used in insulated concrete panels. PCI Journal, 61(2), 23–37. doi:10.15554/pcij.03012016.23.37.
[30] Chen, A., Norris, T. G., Hopkins, P. M., & Yossef, M. (2015). Experimental investigation and finite element analysis of flexural behavior of insulated concrete sandwich panels with FRP plate shear connectors. Engineering Structures, 98, 95–108. doi:10.1016/j.engstruct.2015.04.022.
[31] Bishnoi, U., Danie Roy, A. B., & Kwatra, N. (2021). Out of plane performance of novel concrete sandwich panel using different geosynthetics. Construction and Building Materials, 300. doi:10.1016/j.conbuildmat.2021.124186.
[32] Gombeda, M. J., Naito, C. J., & Quiel, S. E. (2020). Development and performance of a ductile shear tie for precast concrete insulated wall panels. Journal of Building Engineering, 28. doi:10.1016/j.jobe.2019.101084.
[33] O"²Hegarty, R., West, R., Reilly, A., & Kinnane, O. (2019). Composite behaviour of fibre-reinforced concrete sandwich panels with FRP shear connectors. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109475.
[34] Wang, W., Zhang, X. D., Zhou, X. L., Wu, L., & Zhu, H. J. (2021). Study on Shear Behavior of Multi-Bolt Connectors for Prefabricated Steel–Concrete Composite Beams. Frontiers in Materials, 8. doi:10.3389/fmats.2021.625425.
[35] Fang, Z., Liang, W., Fang, H., Jiang, H., & Wang, S. (2021). Experimental investigation on shear behavior of high-strength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading. Engineering Structures, 244. doi:10.1016/j.engstruct.2021.112777.
[36] Wang, W., Zhang, X. D., Ding, F. X., & Zhou, X. L. (2021). Finite element analysis on shear behavior of high-strength bolted connectors under inverse push-off loading. Energies, 14(2). doi:10.3390/en14020479.
[37] Zhang, Y., Zhang, J., Chen, B., & Zhang, Y. (2022). Shear Mechanism of High-Strength-Friction-Grip Bolts in Steel and Steel-Fiber-Reinforced-Concrete Composite Beams. Frontiers in Materials, 9. doi:10.3389/fmats.2022.899112.
[38] Luo, Y. B., Sun, S. K., Yan, J. B., Zhao, Y. C., & Lam, D. (2022). Shear Behavior of Novel Demountable Bolted Shear Connector for Prefabricated Composite Beam. Advanced Steel Construction, 18(4), 745–752. doi:10.18057/IJASC.2022.18.4.2.
[39] Abdulkareem, T., & A. Alfeehan, A. (2018). Effect of the Rib Depth to the Overall Beam Depth Ratio in the Lightweight One-Way Ribbed Slabs. International Journal of Engineering & Technology, 7(4.20), 438–442. doi:10.14419/ijet.v7i4.20.26239.
[40] Iraq Specifications No.45. (2021). Aggregate from Natural Sources for Concrete. Iraqi Ministry of Planning, Baghdad, Iraq.
[41] ASTM A1064/A1064M-18a. (2022). Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/A1064_A1064M-18A
[42] ASTM F593-17. (2023). Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs. ASTM International, Pennsylvania, United States. doi:10.1520/F0593-17.
[43] Bastin, D. R. A., & Sharma, U. K. (2017). A study on different techniques of restoration of fire damaged reinforced concrete flexural members. Journal of Structural Fire Engineering, 8(2), 131–148. doi:10.1108/JSFE-03-2017-0026.
[44] Tomlinson, D., & Fam, A. (2018). Axial load-bending moment-interaction diagram of partially composite precast concrete sandwich panels. ACI Structural Journal, 115(6), 1515–1528. doi:10.14359/51710834.
[45] Al-Rubaye, S., Sorensen, T., Thomas, R. J., & Maguire, M. (2019). Generalized beam–spring model for predicting elastic behavior of partially composite concrete sandwich wall panels. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109533.
[46] Bush, T. D., & Stine, G. L. (1994). Flexural Behavior of Composite Precast Concrete Sandwich Panels with Continuous Truss Connectors. PCI Journal, 39(2), 112–121. doi:10.15554/pcij.03011994.112.121.
[47] Benayoune, A., Samad, A. A., Trikha, D. N., Ali, A. A., & Ellinna, S. H. M. (2008). Flexural behaviour of pre-cast concrete sandwich composite panel–experimental and theoretical investigations. Construction and Building Materials, 22(4), 580-592. doi:10.1016/j.conbuildmat.2006.11.023.
[48] Choi, I., Kim, J. H., & Kim, H. R. (2015). Composite behavior of insulated concrete sandwich wall panels subjected to wind pressure and suction. Materials, 8(3), 1264–1282. doi:10.3390/ma8031264.
[49] Frankl, B. A., Lucier, G. W., Hassan, T. K., & Rizkalla, S. H. (2011). Behavior of precast, prestressed concrete sandwich wall panels reinforced with CFRP shear grid. PCI Journal, 56(2), 42–54. doi:10.15554/pcij.03012011.42.54.
[50] Lorenz, R. F., & Stockwell, F. W. (1984). Concrete Slab Stresses in Partial Composite Beams and Girders. Engineering Journal, 21(3), 185–188. doi:10.62913/engj.v21i3.419.
[51] Zheng, T., Ge, Q., Xiong, F., Li, G., Xue, Y., & Deng, X. (2023). Study of the flexural performance and a novel calculation formula for the degree of composite action for precast concrete sandwich panels. Structural Design of Tall and Special Buildings, 32(18). doi:10.1002/tal.2065.
[52] Pessiki, S., & Mlynarczyk, A. (2003). Experimental evaluation of the composite behavior of precast concrete sandwich wall panels. PCI Journal, 48(2), 54–71. doi:10.15554/pcij.03012003.54.71.
[53] Jiang, H., Guo, Z., & Liu, J. (2018). Composite Behavior of Sandwich Panels with W-Shaped SGFRP Connectors. KSCE Journal of Civil Engineering, 22(5), 1889–1899. doi:10.1007/s12205-017-2050-3.
[54] ASCE/SEI 7-16. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7-16). American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
[55] Mohamad, N., Khalil, A. I., Abdul Samad, A. A., & Goh, W. I. (2014). Structural behavior of precast lightweight foam concrete sandwich panel with double shear truss connectors under flexural load. ISRN Civil Engineering, 317941. doi:10.1155/2014/317941.
[56] Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2019). Experimental study on the flexural behavior of insulated concrete sandwich panels with wires as shear connectors. Alexandria Engineering Journal, 58(3), 901–908. doi:10.1016/j.aej.2019.08.005.
[2] Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2017). Precast concrete sandwich one-way slabs under flexural loading. Engineering Structures, 138, 447–457. doi:10.1016/j.engstruct.2017.02.033.
[3] Alfeehan, A. A., & Sheer, N. M. (2018). Reactive powder concrete sandwich panels with mechanical connection approach. 2018 International Conference on Advance of Sustainable Engineering and Its Application (ICASEA), 121–125. doi:10.1109/icasea.2018.8370968.
[4] Alabduljabbar, H., Alyousef, R., & Amran, M. (2019). Applicable use of lightweight foam concrete composite sandwich panels as a flooring system. Sustainable Construction Materials and Technologies (SCMT), 1, 9–19. doi:10.18552/2019/idscmt5002.
[5] Sumadi, S. R., & Ramli, M. (2008). Development of lightweight ferrocement sandwich panels for modular housing and industrialized building system. Universiti Teknologi Malaysia (UTM), Research Vote, 73311.
[6] Chen, Y., Kang, C., Wu, Y., & Qian, Z. (2022). Bending Performance of Precast Ceramsite-Concrete-Insulated Sandwich Panel with Stainless Steel Shear Connectors. Buildings, 12(10). doi:10.3390/buildings12101640.
[7] Lou, X., Xue, W., Bai, H., Li, Y., & Huang, Q. (2022). Shear behavior of stainless-steel plate connectors for insulated precast concrete sandwich panels. Structures, 44, 1046–1056. doi:10.1016/j.istruc.2022.08.073.
[8] Guerrero, N., Carrillo, J., Herrera, R. I., & Marante, M. E. (2024). Experimental and numerical investigation on the behavior of concrete sandwich slab panel for a structural system. Journal of Building Engineering, 86. doi:10.1016/j.jobe.2024.108930.
[9] Egbon, B., & Tomlinson, D. (2021). Experimental investigation of longitudinal shear transfer in insulated concrete wall panels with notched insulation. Journal of Building Engineering, 43. doi:10.1016/j.jobe.2021.103173.
[10] Huang, J., Jiang, Q., Chong, X., Ye, X., & Wang, D. (2020). Experimental study on precast concrete sandwich panel with cross-shaped GFRP connectors. Magazine of Concrete Research, 72(3), 149–162. doi:10.1680/jmacr.18.00258.
[11] Chen, A., Yossef, M., & Hopkins, P. (2020). A comparative study of different methods to calculate degrees of composite action for insulated concrete sandwich panels. Engineering Structures, 212. doi:10.1016/j.engstruct.2020.110423.
[12] Chen, D., Li, K., Yuan, Z., Cheng, B., & Kang, X. (2022). Shear Behavior of FRP Connectors in Precast Sandwich Insulation Wall Panels. Buildings, 12(8). doi:10.3390/buildings12081095.
[13] Huang, J. Q., & Dai, J. G. (2020). Flexural performance of precast geopolymer concrete sandwich panel enabled by FRP connector. Composite Structures, 248. doi:10.1016/j.compstruct.2020.112563.
[14] Tomlinson, D., & Fam, A. (2015). Flexural behavior of precast concrete sandwich wall panels with basalt FRP and steel reinforcement. PCI Journal, 60(6), 51–71. doi:10.15554/pcij.11012015.51.71.
[15] Liu, X., Wang, X., Yang, T., & Wu, Z. (2022). The Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with BFRP. Buildings, 12(9). doi:10.3390/buildings12091326.
[16] Jiang, H., Guo, Z., Liu, J., & Liu, H. (2018). The Shear Behavior of Precast Concrete Sandwich Panels with W-shaped SGFRP Shear Connectors. KSCE Journal of Civil Engineering, 22(10), 3961–3971. doi:10.1007/s12205-018-0809-9.
[17] Einea, A., David C. Salmon, D. C., Tadros, M. K., & Culp, T. (1994). A New Structurally and Thermally Efficient Precast Sandwich Panel System. PCI Journal, 39(4), 90–101. doi:10.15554/pcij.07011994.90.101.
[18] Henin, E., Morcous, G., & Tadros, M. K. (2014). Precast/Prestressed Concrete Sandwich Panels for Thermally Efficient Floor/Roof Applications. Practice Periodical on Structural Design and Construction, 19(3). doi:10.1061/(asce)sc.1943-5576.0000213.
[19] Choi, K. B., Choi, W. C., Feo, L., Jang, S. J., & Yun, H. Do. (2015). In-plane shear behavior of insulated precast concrete sandwich panels reinforced with corrugated GFRP shear connectors. Composites Part B: Engineering, 79, 419–429. doi:10.1016/j.compositesb.2015.04.056.
[20] Mohamad, N., Khalifa, H., Abdul Samad, A. A., Mendis, P., & Goh, W. I. (2016). Structural performance of recycled aggregate in CSP slab subjected to flexure load. Construction and Building Materials, 115, 669–680. doi:10.1016/j.conbuildmat.2016.04.086.
[21] Zhang, M., Feng, W., Chen, K., & Li, B. (2024). Flexural Behavior of a New Precast Insulation Mortar Sandwich Panel. Applied Sciences, 14(5), 2071. doi:10.3390/app14052071.
[22] Cox, B., Syndergaard, P., Al-Rubaye, S., Pozo-Lora, F. F., Tawadrous, R., & Maguire, M. (2019). Lumped GFRP star connector system for partial composite action in insulated precast concrete sandwich panels. Composite Structures, 229. doi:10.1016/j.compstruct.2019.111465.
[23] Sevil Yaman, T., & Lucier, G. (2023). Shear Transfer Mechanism between CFRP Grid and EPS Rigid Foam Insulation of Precast Concrete Sandwich Panels. Buildings, 13(4). doi:10.3390/buildings13040928.
[24] Shin, D. H., & Kim, H. J. (2020). Composite effects of shear connectors used for lightweight-foamed-concrete sandwich wall panels. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101108.
[25] Huang, J. Q., & Dai, J. G. (2019). Direct shear tests of glass fiber reinforced polymer connectors for use in precast concrete sandwich panels. Composite Structures, 207, 136–147. doi:10.1016/j.compstruct.2018.09.017.
[26] He, Z. Z., Pan, P., Xiao, G. Q., Shen, S. D., & Ren, J. Y. (2022). Test and analysis on axial performances of GFRP restraint connectors for sandwich insulation wall panels. Journal of Building Engineering, 45, 103457. doi:10.1016/j.jobe.2021.103457.
[27] O'Hegarty, R., Kinnane, O., Grimes, M., Newell, J., Clifford, M., & West, R. (2021). Development of thin precast concrete sandwich panels: Challenges and outcomes. Construction and Building Materials, 267, 120981. doi:10.1016/j.conbuildmat.2020.120981.
[28] Tawil, H., Tan, C. G., Ramli Sulong, N. H., Nazri, F. M., Shamsudin, M. F., & Muhamad Bunnori, N. (2024). Optimization of Shear Resistance in Precast Concrete Sandwich Wall Panels Using an S-Type Shear Connector. Buildings, 14(6). doi:10.3390/buildings14061725.
[29] Goudarzi, N., Korany, Y., Adeeb, S., & Cheng, R. (2016). Characterization of the shear behavior of Z-shaped steel plate connectors used in insulated concrete panels. PCI Journal, 61(2), 23–37. doi:10.15554/pcij.03012016.23.37.
[30] Chen, A., Norris, T. G., Hopkins, P. M., & Yossef, M. (2015). Experimental investigation and finite element analysis of flexural behavior of insulated concrete sandwich panels with FRP plate shear connectors. Engineering Structures, 98, 95–108. doi:10.1016/j.engstruct.2015.04.022.
[31] Bishnoi, U., Danie Roy, A. B., & Kwatra, N. (2021). Out of plane performance of novel concrete sandwich panel using different geosynthetics. Construction and Building Materials, 300. doi:10.1016/j.conbuildmat.2021.124186.
[32] Gombeda, M. J., Naito, C. J., & Quiel, S. E. (2020). Development and performance of a ductile shear tie for precast concrete insulated wall panels. Journal of Building Engineering, 28. doi:10.1016/j.jobe.2019.101084.
[33] O"²Hegarty, R., West, R., Reilly, A., & Kinnane, O. (2019). Composite behaviour of fibre-reinforced concrete sandwich panels with FRP shear connectors. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109475.
[34] Wang, W., Zhang, X. D., Zhou, X. L., Wu, L., & Zhu, H. J. (2021). Study on Shear Behavior of Multi-Bolt Connectors for Prefabricated Steel–Concrete Composite Beams. Frontiers in Materials, 8. doi:10.3389/fmats.2021.625425.
[35] Fang, Z., Liang, W., Fang, H., Jiang, H., & Wang, S. (2021). Experimental investigation on shear behavior of high-strength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading. Engineering Structures, 244. doi:10.1016/j.engstruct.2021.112777.
[36] Wang, W., Zhang, X. D., Ding, F. X., & Zhou, X. L. (2021). Finite element analysis on shear behavior of high-strength bolted connectors under inverse push-off loading. Energies, 14(2). doi:10.3390/en14020479.
[37] Zhang, Y., Zhang, J., Chen, B., & Zhang, Y. (2022). Shear Mechanism of High-Strength-Friction-Grip Bolts in Steel and Steel-Fiber-Reinforced-Concrete Composite Beams. Frontiers in Materials, 9. doi:10.3389/fmats.2022.899112.
[38] Luo, Y. B., Sun, S. K., Yan, J. B., Zhao, Y. C., & Lam, D. (2022). Shear Behavior of Novel Demountable Bolted Shear Connector for Prefabricated Composite Beam. Advanced Steel Construction, 18(4), 745–752. doi:10.18057/IJASC.2022.18.4.2.
[39] Abdulkareem, T., & A. Alfeehan, A. (2018). Effect of the Rib Depth to the Overall Beam Depth Ratio in the Lightweight One-Way Ribbed Slabs. International Journal of Engineering & Technology, 7(4.20), 438–442. doi:10.14419/ijet.v7i4.20.26239.
[40] Iraq Specifications No.45. (2021). Aggregate from Natural Sources for Concrete. Iraqi Ministry of Planning, Baghdad, Iraq.
[41] ASTM A1064/A1064M-18a. (2022). Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/A1064_A1064M-18A
[42] ASTM F593-17. (2023). Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs. ASTM International, Pennsylvania, United States. doi:10.1520/F0593-17.
[43] Bastin, D. R. A., & Sharma, U. K. (2017). A study on different techniques of restoration of fire damaged reinforced concrete flexural members. Journal of Structural Fire Engineering, 8(2), 131–148. doi:10.1108/JSFE-03-2017-0026.
[44] Tomlinson, D., & Fam, A. (2018). Axial load-bending moment-interaction diagram of partially composite precast concrete sandwich panels. ACI Structural Journal, 115(6), 1515–1528. doi:10.14359/51710834.
[45] Al-Rubaye, S., Sorensen, T., Thomas, R. J., & Maguire, M. (2019). Generalized beam–spring model for predicting elastic behavior of partially composite concrete sandwich wall panels. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109533.
[46] Bush, T. D., & Stine, G. L. (1994). Flexural Behavior of Composite Precast Concrete Sandwich Panels with Continuous Truss Connectors. PCI Journal, 39(2), 112–121. doi:10.15554/pcij.03011994.112.121.
[47] Benayoune, A., Samad, A. A., Trikha, D. N., Ali, A. A., & Ellinna, S. H. M. (2008). Flexural behaviour of pre-cast concrete sandwich composite panel–experimental and theoretical investigations. Construction and Building Materials, 22(4), 580-592. doi:10.1016/j.conbuildmat.2006.11.023.
[48] Choi, I., Kim, J. H., & Kim, H. R. (2015). Composite behavior of insulated concrete sandwich wall panels subjected to wind pressure and suction. Materials, 8(3), 1264–1282. doi:10.3390/ma8031264.
[49] Frankl, B. A., Lucier, G. W., Hassan, T. K., & Rizkalla, S. H. (2011). Behavior of precast, prestressed concrete sandwich wall panels reinforced with CFRP shear grid. PCI Journal, 56(2), 42–54. doi:10.15554/pcij.03012011.42.54.
[50] Lorenz, R. F., & Stockwell, F. W. (1984). Concrete Slab Stresses in Partial Composite Beams and Girders. Engineering Journal, 21(3), 185–188. doi:10.62913/engj.v21i3.419.
[51] Zheng, T., Ge, Q., Xiong, F., Li, G., Xue, Y., & Deng, X. (2023). Study of the flexural performance and a novel calculation formula for the degree of composite action for precast concrete sandwich panels. Structural Design of Tall and Special Buildings, 32(18). doi:10.1002/tal.2065.
[52] Pessiki, S., & Mlynarczyk, A. (2003). Experimental evaluation of the composite behavior of precast concrete sandwich wall panels. PCI Journal, 48(2), 54–71. doi:10.15554/pcij.03012003.54.71.
[53] Jiang, H., Guo, Z., & Liu, J. (2018). Composite Behavior of Sandwich Panels with W-Shaped SGFRP Connectors. KSCE Journal of Civil Engineering, 22(5), 1889–1899. doi:10.1007/s12205-017-2050-3.
[54] ASCE/SEI 7-16. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7-16). American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
[55] Mohamad, N., Khalil, A. I., Abdul Samad, A. A., & Goh, W. I. (2014). Structural behavior of precast lightweight foam concrete sandwich panel with double shear truss connectors under flexural load. ISRN Civil Engineering, 317941. doi:10.1155/2014/317941.
[56] Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2019). Experimental study on the flexural behavior of insulated concrete sandwich panels with wires as shear connectors. Alexandria Engineering Journal, 58(3), 901–908. doi:10.1016/j.aej.2019.08.005.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
