Complex Geodetic Monitoring of the Massive Sports Structures by Terrestrial Laser Scanning
Downloads
Doi: 10.28991/CEJ-2025-011-03-05
Full Text: PDF
[2] Kot, P., Muradov, M., Gkantou, M., Kamaris, G. S., Hashim, K., & Yeboah, D. (2021). Recent advancements in non-destructive testing techniques for structural health monitoring. Applied Sciences (Switzerland), 11(6), 2750. doi:10.3390/app11062750.
[3] Caballero-Russi, D., Ortiz, A. R., Guzmán, A., & Canchila, C. (2022). Design and Validation of a Low-Cost Structural Health Monitoring System for Dynamic Characterization of Structures. Applied Sciences (Switzerland), 12(6), 2807. doi:10.3390/app12062807.
[4] O'Shea, M., & Murphy, J. (2020). Design of a BIM integrated structural health monitoring system for a historic offshore lighthouse. Buildings, 10(7), 131. doi:10.3390/BUILDINGS10070131.
[5] Panah, R. S., & Kioumarsi, M. (2021). Application of building information modelling (BIM) in the health monitoring and maintenance process: A systematic review. Sensors (Switzerland), 21(3), 1–26. doi:10.3390/s21030837.
[6] Shults, R. (2022). Geospatial Monitoring of Engineering Structures as a Part of BIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 46(5/W1-2022), 225–230. doi:10.5194/isprs-archives-XLVI-5-W1-2022-225-2022.
[7] Hamza, V., Stopar, B., AmbroоiÄ, T., Turk, G., & Sterle, O. (2020). Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes. Sensors (Switzerland), 20(16), 1–16. doi:10.3390/s20164375.
[8] Zhao, L., Yang, Y., Xiang, Z., Zhang, S., Li, X., Wang, X., Ma, X., Hu, C., Pan, J., Zhou, Y., & Chen, M. (2022). A Novel Low-Cost GNSS Solution for the Real-Time Deformation Monitoring of Cable Saddle Pushing: A Case Study of Guojiatuo Suspension Bridge. Remote Sensing, 14(20), 5174. doi:10.3390/rs14205174.
[9] Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., & Wang, J. (2018). Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors (Switzerland), 18(11), 3682. doi:10.3390/s18113682.
[10] Zschiesche, K. (2021). Image Assisted Total Stations for Structural Health Monitoring”A Review. Geomatics, 2(1), 1–16. doi:10.3390/geomatics2010001.
[11] Doler, D., & KovaÄiÄ, B. (2019). Improved decision-making geo-information system for continuous monitoring of deformations on airport infrastructure. ISPRS International Journal of Geo-Information, 8(1), 1. doi:10.3390/ijgi8010001.
[12] Olaszek, P., Maciejewski, E., Rakoczy, A., Cabral, R., Santos, R., & Ribeiro, D. (2024). Remote Inspection of Bridges with the Integration of Scanning Total Station and Unmanned Aerial Vehicle Data. Remote Sensing, 16(22), 4176. doi:10.3390/rs16224176.
[13] Lienhart, W., Ehrhart, M., & Grick, M. (2017). High frequent total station measurements for the monitoring of bridge vibrations. Journal of Applied Geodesy, 11(1), 1–8. doi:10.1515/jag-2016-0028.
[14] Lienhart, W. (2017). Geotechnical monitoring using total stations and laser scanners: critical aspects and solutions. Journal of Civil Structural Health Monitoring, 7(3), 315–324. doi:10.1007/s13349-017-0228-5.
[15] Marendić, A., Paar, R., & Damjanović, D. (2017). Measurement of bridge dynamic displacements and natural frequencies by RTS. Journal of the Croatian Association of Civil Engineers, 69(4), 281–294. doi:10.14256/jce.1804.2016.
[16] Pawlak, Z. M., WyczaЂek, I., & Marciniak, P. (2023). Two Complementary Approaches toward Geodetic Monitoring of a Historic Wooden Church to Inspect Its Static and Dynamic Behavior. Sensors, 23(20), 8392. doi:10.3390/s23208392.
[17] Barsocchi, P., Bartoli, G., Betti, M., Girardi, M., Mammolito, S., Pellegrini, D., & Zini, G. (2021). Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. International Journal of Architectural Heritage, 15(1), 22–44. doi:10.1080/15583058.2020.1719229.
[18] Corsetti, M., Fossati, F., Manunta, M., & Marsella, M. (2018). Advanced SBAS-DInSAR technique for controlling large civil infrastructures: An application to the Genzano di Lucania dam. Sensors (Switzerland), 18(7), 2371. doi:10.3390/s18072371.
[19] Wu, S., Zhang, B., Ding, X., Zhang, L., Zhang, Z., & Zhang, Z. (2023). Radar Interferometry for Urban Infrastructure Stability Monitoring: From Techniques to Applications. Sustainability (Switzerland), 15(19), 14654. doi:10.3390/su151914654.
[20] Teng, J., Lu, W., Cui, Y., & Zhang, R. (2016). Temperature and Displacement Monitoring to Steel Roof Construction of Shenzhen Bay Stadium. International Journal of Structural Stability and Dynamics, 16(4), 1640020. doi:10.1142/S0219455416400204.
[21] Shults, R., Soltabayeva, S., Seitkazina, G., Nukarbekova, Z., & Kucherenko, O. (2020). Geospatial Monitoring and Structural Mechanics Models: a Case Study of Sports Structures. The 11th International Conference Environmental Engineering 11th ICEE Selected Papers, enviro.2020.685. doi:10.3846/enviro.2020.685.
[22] Mukupa, W., Roberts, G. W., Hancock, C. M., & Al-Manasir, K. (2017). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49(353), 99–116. doi:10.1080/00396265.2015.1133039.
[23] GŠ‚owacki, T., Grzempowski, P., SudoŠ‚, E., Wajs, J., & ZajÄ…c, M. (2017). The assessment of the application of terrestrial laser scanning for measuring the geometrics of cooling towers. Geomatics, Landmanagement and Landscape, 4, 49–57. doi:10.15576/gll/2016.4.49.
[24] Beshr, A. A. A., Basha, A. M., El-Madany, S. A., & El-Azeem, F. A. (2023). Deformation of High Rise Cooling Tower through Projection of Coordinates Resulted from Terrestrial Laser Scanner Observations onto a Vertical Plane. ISPRS International Journal of Geo-Information, 12(10), 417. doi:10.3390/ijgi12100417.
[25] Makuch, M., Gawronek, P., & Mitka, B. (2024). Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping. Sensors, 24(18), 6045. doi:10.3390/s24186045.
[26] Helming, P., Von Freyberg, A., Sorg, M., & Fischer, A. (2021). Wind turbine tower deformation measurement using terrestrial laser scanning on a 3.4 MW wind turbine. Energies, 14(11), 3255. doi:10.3390/en14113255.
[27] Kregar, K., AmbroоiÄ, T., Kogoj, D., VezoÄnik, R., & MarjetiÄ, A. (2015). Determining the inclination of tall chimneys using the TPS and TLS approach. Measurement, 75, 354–363. doi:10.1016/j.measurement.2015.08.006.
[28] Barazzetti, L., Previtali, M., & Roncoroni, F. (2019). The Use of Terrestrial Laser Scanning Techniques to Evaluate Industrial Masonry Chimney Verticality. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 173–178. doi:10.5194/isprs-archives-xlii-2-w11-173-2019.
[29] Siwiec, J., & Lenda, G. (2022). Integration of terrestrial laser scanning and structure from motion for the assessment of industrial chimney geometry. Measurement: Journal of the International Measurement Confederation, 199, 111404. doi:10.1016/j.measurement.2022.111404.
[30] Li, Y., Liu, P., Li, H., & Huang, F. (2021). A comparison method for 3D laser point clouds in displacement change detection for arch dams. ISPRS International Journal of Geo-Information, 10(3), 184. doi:10.3390/ijgi10030184.
[31] Ning, X. Y., Zhang, K., Jiang, N., Luo, X. L., Zhang, D. M., Peng, J. W., Luo, X. X., Zheng, Y. S., & Guo, D. (2024). 3D deformation analysis for earth dam monitoring based on terrestrial laser scanning (TLS) and the iterative closest point (ICP) algorithm. Frontiers in Earth Science, 12. doi:10.3389/feart.2024.1421705.
[32] Bolkas, D., O'Banion, M., Laughlin, J., & Prickett, J. (2024). Monitoring of a rockfill embankment dam using TLS and sUAS point clouds. Journal of Applied Geodesy, 19(1), 75–93. doi:10.1515/jag-2023-0038.
[33] Jia, D., Zhang, W., & Liu, Y. (2021). Systematic approach for tunnel deformation monitoring with terrestrial laser scanning. Remote Sensing, 13(17), 3519. doi:10.3390/rs13173519.
[34] Xu, X., Yang, H., & Kargoll, B. (2019). Robust and automatic modeling of tunnel structures based on terrestrial laser scanning measurement. International Journal of Distributed Sensor Networks, 15(11), 1-9. doi:10.1177/1550147719884886.
[35] Cui, L.-Z., Liu, J., Luo, H., Wang, J., Zhang, X., Lv, G., & Xie, Q. (2024). Deformation Measurement of Tunnel Shotcrete Liner Using the Multiepoch LiDAR Point Clouds. Journal of Construction Engineering and Management, 150(6), 150. doi:10.1061/jcemd4.coeng-14518.
[36] Beshr, A. A. A., Ghazi, Z., & Heneash, U. (2025). Condition assessment and inspection of highway bridges using terrestrial laser scanner. World Journal of Engineering, 499. doi:10.1108/WJE-09-2024-0499.
[37] Rashidi, M., Mohammadi, M., Kivi, S. S., Abdolvand, M. M., Truong-Hong, L., & Samali, B. (2020). A decade of modern bridge monitoring using terrestrial laser scanning: Review and future directions. Remote Sensing, 12(22), 1–34. doi:10.3390/rs12223796.
[38] Zhao, Y., Seo, H., & Chen, C. (2021). Displacement mapping of point clouds: application of retaining structures composed of sheet piles. Journal of Civil Structural Health Monitoring, 11(4), 915–930. doi:10.1007/s13349-021-00491-y.
[39] Yang, H., Omidalizarandi, M., Xu, X., & Neumann, I. (2017). Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures. Composite Structures, 169, 173–179. doi:10.1016/j.compstruct.2016.10.095.
[40] Nguyen, A. C., & Weinand, Y. (2020). Displacement study of a large-scale freeform timber plate structure using a total station and a terrestrial laser scanner. Sensors (Switzerland), 20(2), 413. doi:10.3390/s20020413.
[41] Shults, R., Annenkov, A., Seitkazina, G., Soltabayeva, S., Kozhayev, Z., Khailak, A., Nikitenko, K., Sossa, B., & Kulichenko, N. (2022). Analysis of the displacements of pipeline overpasses based on geodetic monitoring results. Geodesy and Geodynamics, 13(1), 50–71. doi:10.1016/j.geog.2021.09.005.
[42] Li, J., Wang, L., & Huang, J. (2023). Wall length-based deformation monitoring method of brick-concrete buildings in mining area using terrestrial laser scanning. Journal of Civil Structural Health Monitoring, 13(4–5), 1077–1090. doi:10.1007/s13349-023-00697-2.
[43] Sun, W., Wang, J., Jin, F., Li, G., & Xu, F. (2023). Intelligent Construction Monitoring Method for Large and Complex Steel Structures Based on Laser Point Cloud. Buildings, 13(7), 1749. doi:10.3390/buildings13071749.
[44] Nap, M. E., Chiorean, S., Cira, C. I., Manso-Callejo, M. í., Păunescu, V., Șuba, E. E., & Sălăgean, T. (2023). Non-Destructive Measurements for 3D Modeling and Monitoring of Large Buildings Using Terrestrial Laser Scanning and Unmanned Aerial Systems. Sensors, 23(12), 5678. doi:10.3390/s23125678.
[45] Xu, X., Wang, Z., Shi, P., Liu, W., Tang, Q., Bao, X., Chen, X., & Yang, H. (2023). Intelligent monitoring and residual analysis of tunnel point cloud data based on free-form approximation. Mechanics of Advanced Materials and Structures, 30(8), 1703–1712. doi:10.1080/15376494.2022.2041775.
[46] EM 1110-2-1009. (2018). Structural Deformation Surveying. US Army Corps of Engineers, Washington, United States.
[47] Shults, R. (2021). The Models of Structural Mechanics for Geodetic Accuracy Assignment: A Case Study of the Finite Element Method. Contributions to International Conferences on Engineering Surveying. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham, Switzerland. doi:10.1007/978-3-030-51953-7_16.
[48] Yang, H., Xu, X., Xu, X., & Liu, W. (2024). TLS and FEM combined methods for deformation analysis of tunnel structures. Mechanics of Advanced Materials and Structures, 31(6), 1264–1271. doi:10.1080/15376494.2022.2134613.
[49] Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., Korumaz, A. G., & Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153, 224–238. doi:10.1016/j.engstruct.2017.10.026.
[50] Takhirov, S., Rakhmonov, B., Nafasov, R., Samandarov, A., & Sultanova, S. (2023). Laser Scanning and Ambient Vibration Study of Juma Mosque in Khiva (Uzbekistan) with Subsequent Finite Element Modeling of Its Minaret. Remote Sensing, 15(6), 1632. doi:10.3390/rs15061632.
[51] Kermarrec, G., Kargoll, B., & Alkhatib, H. (2020). Deformation analysis using B-spline surface with correlated terrestrial laser scanner observations-a bridge under load. Remote Sensing, 12(5), 829. doi:10.3390/rs12050829.
[52] Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and NURBS modeling for the deformation monitoring of an earth-rock dam. Sensors (Switzerland), 19(1), 22. doi:10.3390/s19010022.
[53] Harmening, C. (2020). Spatio-temporal deformation analysis using enhanced B-spline models of laser scanning point clouds. PhD Thesis, Technische Universität Wien, Vienna, Austria.
[54] Harmening, C., Hobmaier, C., & Neuner, H. (2021). Laser scanner–based deformation analysis using approximating b-spline surfaces. Remote Sensing, 13(18), 3551. doi:10.3390/rs13183551.
[55] Bureick, J., Alkhatib, H., & Neumann, I. (2016). Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis. Journal of Applied Geodesy, 10(1), 27–35. doi:10.1515/jag-2015-0020.
[56] Xu, X., Kargoll, B., Bureick, J., Yang, H., Alkhatib, H., & Neumann, I. (2018). TLS-based profile model analysis of major composite structures with robust B-spline method. Composite Structures, 184, 814–820. doi:10.1016/j.compstruct.2017.10.057.
[57] Xu, J., Ding, L., Luo, H., Chen, E. J., & Wei, L. (2019). Near real-time circular tunnel shield segment assembly quality inspection using point cloud data: A case study. Tunnelling and Underground Space Technology, 91. doi:10.1016/j.tust.2019.102998.
[58] Kermarrec, G., Schild, N., & Hartmann, J. (2021). Fitting terrestrial laser scanner point clouds with t-splines: Local refinement strategy for rigid body motion. Remote Sensing, 13(13), 2494. doi:10.3390/rs13132494.
[59] Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The Features of Sports Complex "Sunkar” Monitoring By Terrestrial Laser Scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(5/W2-2023), 105–110. doi:10.5194/isprs-archives-XLVIII-5-W2-2023-105-2023.
[60] Logan, D.L. (2011) A First Course in the Finite Element Method. 5th Edition, Thomson, Toronto, Canada.
[61] Lee, H. H. (2012). Finite element simulations with ANSYS Workbench 14. SDC publications, Mission, Canada.
[62] Liu, G.R. and Quek, S.S. (2003) The Finite Element Method: A Practical Course. Butterworth-Heinemann, New York, United States.
[63] Connor, J. J., & Faraji, S. (2013). Fundamentals of Structural Engineering. Springer New York, United States. doi:10.1007/978-1-4614-3262-3.
[64] Cadence Design Systems (2025). An Introduction to B-Spline Curves. Cadence Design Systems, California, United States. Available online: https://resources.system-analysis.cadence.com/blog/msa2022-an-introduction-to-b-spline-curves (accessed on February 2025).
[65] Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1), 46. doi:10.1186/s12874-019-0666-3.
[66] MTU (2025). NURBS: Definition. Michigan Technological University, Michigan, United States. Available online: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/NURBS-def.html (accessed on February 2025).
[67] Piegl, L., & Tiller, W. (1995). The NURBS Book: Monographs in Visual Communication (VISUALCOMM). Springer-Verlag, Berlin/Heidelberg, Germany. doi:10.1007/978-3-642-97385-7.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
