Structural Assessment and Rehabilitation of an Existing Hydraulic Masonry Structure Supporting Railway
Downloads
Doi: 10.28991/CEJ-2025-011-02-012
Full Text: PDF
[2] Sarhosis, V., Liu, B., & Gilbert, M. (2024). The 3d response of a large-scale masonry arch bridge - part I: Performance under low and medium loading levels. Engineering Structures, 316. doi:10.1016/j.engstruct.2024.118496.
[3] Diwedar, A. I., Fathy, R. M., Abd Elhamid, A. M. I., & Bahgat, M. (2023). A hybrid approach to assess the hydraulic structures rehabilitation work, case study: El-Bagoureya head regulator, Egypt. Alexandria Engineering Journal, 75, 67–79. doi:10.1016/j.aej.2023.05.068.
[4] Elhakem, Y., & Emarah, D. (2022). Using Dynamic Tests to Evaluate Structural Status of Barrage Before and After Rehabilitation. Journal of Engineering Sciences, 17–31. doi:10.21608/jesaun.2022.151656.1156.
[5] Anwar, A. M., & Abd Elwaly, A. M. A. (2023). Modal displacement vs Curvature functions as damage identifier for masonry structures. Alexandria Engineering Journal, 68, 527–538. doi:10.1016/j.aej.2023.01.042.
[6] Liu, B., Sarhosis, V., & Lemos, J. V. (2024). Quantification of the crack propagation and global failure mechanism of single- and multi-ring masonry arch bridges. Engineering Structures, 306. doi:10.1016/j.engstruct.2024.117805.
[7] Bencardino, F., Curto, R., & Scavelli, V. (2023). Inspection and Structural Rehabilitation of an Existing Masonry Arch Railway Bridge. Applied Sciences (Switzerland), 13(5), 2973. doi:10.3390/app13052973.
[8] Anwar, A. M., Hashad, A. S., & Omar, M. (2024). Dynamic measurements to assess stress levels on buried hydraulic structures. Water Science, 38(1), 21–32. doi:10.1080/23570008.2023.2295046.
[9] Anwar, A. M., ELattar, A., & Abd-elwaly, A. (2022). DIM for detecting cracks in masonry piers with different crack patterns. Journal of Engineering Sciences, 50(6), 335-349. doi:10.21608/jesaun.2022.147021.1149.
[10] Ramadan, A. N., Jing, P., Zhang, J., & Zohny, H. N. E. D. (2021). Numerical analysis of additional stresses in railway track elements due to subgrade settlement using fem simulation. Applied Sciences (Switzerland), 11(18), 8501. doi:10.3390/app11188501.
[11] Hamdy, G. A., El-Salakawy, T. S., El-Mashad, M. E., & Elwan, R. M. (2021). Structural Analysis and Safety Assessment of a Historic Hydraulic Structure in Egypt. Cities' Identity Through Architecture and Arts. Advances in Science, Technology & Innovation, Springer, Cham, Switzerland. doi:10.1007/978-3-030-14869-0_1.
[12] da Silva, R. F. P. (2022). Advanced non-linear numerical simulation tools for in-service and retrofitting assessment of stone masonry railway arch bridges-Experimental calibration and validation. Ph.D. Thesis, University of Porto, Porto, Portugal.
[13] Mohamed, E. K., & Khalil, E. (2018). Innovative solution for the repair of hydraulic structures (regulators). Water Science, 32(2), 179–191. doi:10.1016/j.wsj.2018.10.001.
[14] Tahir, A., & Kunz, C. (2023). Reliability Based Rehabilitation of Existing Hydraulic Structures. Proceedings of PIANC Smart Rivers 2022, PIANC 2022, Lecture Notes in Civil Engineering, 264, Springer, Singapore. doi:10.1007/978-981-19-6138-0_50.
[15] Brachaczek, W., & GaŠ‚uszka, A. (2023). Repair of concretes in the underwater part of a water barrage. Energy Optimized Construction, 12, 116–123. doi:10.17512/bozpe.2023.12.13.
[16] Bianchini, N., Sabra, Z., Green, K., & Wright, R. (2024). In-situ testing and modeling of a masonry bridge in Surrey (UK): Waverley Mill bridge. Procedia Structural Integrity, 64, 352-359. doi:10.1016/j.prostr.2024.09.262.
[17] Erduran, E., Gonen, S., Pulatsu, B., & Soyoz, S. (2023). Damping in masonry arch railway bridges under service loads: An experimental and numerical investigation. Engineering Structures, 294. doi:10.1016/j.engstruct.2023.116801.
[18] kashani, H. K., Shakiba, M., Bazli, M., Hosseini, S. M., Mortazavi, S. M. R., & Arashpour, M. (2023). The structural response of masonry walls strengthened using prestressed near surface mounted GFRP bars under cyclic loading. Materials and Structures/Materiaux et Constructions, 56(6), 112. doi:10.1617/s11527-023-02201-0.
[19] Zampieri, P., Simoncelo, N., Tetougueni, C. D., & Pellegrino, C. (2018). A review of methods for strengthening of masonry arches with composite materials. Engineering Structures, 171, 154–169. doi:10.1016/j.engstruct.2018.05.070.
[20] Anwar, A. M. (2015). Performance of Masonry Arches Strengthened With CFRP Sandwich. Journal of Engineering Sciences, 43(6), 823–836. doi:10.21608/jesaun.2015.115296.
[21] Alecci, V., De Stefano, M., Focacci, F., Luciano, R., Rovero, L., & Stipo, G. (2017). Strengthening masonry arches with lime-based mortar composite. Buildings, 7(2), 49. doi:10.3390/buildings7020049.
[22] Simoncello, N., Zampieri, P., Gonzalez-Libreros, J., & Pellegrino, C. (2019). Strengthening of Masonry Arches with SFRM. Key Engineering Materials, 817, 244–250. doi:10.4028/www.scientific.net/kem.817.244.
[23] Elsayed, A. abdel-Z., Aly, A. G., Ahmed, M. H., & Omran, O. A. E. (2012). Repair and Strengthening of the Water Piers Barrages By Injection Technique and Its Evaluation. JES. Journal of Engineering Sciences, 40(1), 1–19. doi:10.21608/jesaun.2012.112330.
[24] Ballivy, G., Perret, S., Rhazi, J., Palardy, D., Laporte, R., & Gagnon, E. (2001). Rehabilitation of hydraulic masonry heritage structures: Injection of special cement-based grouts and tomographic control. WIT Transactions on the Built Environment, 55, 527–536.
[25] Jiang, Z., Yang, J., & Su, H. (2023). Mechanical response of masonry structure strengthened with ultra-high performance concrete (UHPC): a comparative analysis for different strengthening tactics. Frontiers in Materials, 10. doi:10.3389/fmats.2023.1289225.
[26] Zampieri, P., Piazzon, R., Niero, L., & Pellegrino, C. (2024). Damaged masonry arch bridges strengthened with external post-tensioning: Experimental and numerical results. Engineering Structures, 318. doi:10.1016/j.engstruct.2024.117929.
[27] Anwar, M., Anwar, A. M., & Emarah, D. A. (2023). Structural Assessment of Heritage Hydraulic Structures - Case Study. Proceedings of the 3rd International Conference on Civil Engineering (ICCE2023), 24-27 October, 2023, Hurghada, Egypt.
[28] Ionescu, B., Hegyi, A., Lăzarescu, A., & Mircea, A. C. (2019). A review regarding the sustainable use of shotcrete at national and international level. Constructii, 20(1/2), 57-64.
[29] Liu, G., Zhao, J., Zhang, Z., Wang, C., & Xu, Q. (2021). Mechanical properties and microstructure of shotcrete under high temperature. Applied Sciences (Switzerland), 11(19). doi:10.3390/app11199043.
[30] ECP201. (2012). Egyptian code for calculating loads and forces in construction and building works. Housing and Building National Research Center, Cairo, Egypt.
[31] ECP203. (2020). Egyptian Code for the Design and Implementation of Concrete Structures. Housing and Building National Research Center, Cairo, Egypt.
[32] ECP202. (2005). Egyptian code for soil mechanics”Design and construction of foundations. Housing and Building National Research Center, Cairo, Egypt.
[33] CSI. (2010). SAP2000, Version 14.2.2. Computers and Structures Inc. (CSI), Viale Lombardia, Italy.
[34] Calderini, C., Lagomarsino, S., Rossi, M., De Canio, G., Mongelli, M. L., & Roselli, I. (2014). Shaking table tests of an arch-pillars system and design of strengthening by the use of tie-rods. Bulletin of Earthquake Engineering, 13(1), 279–297. doi:10.1007/s10518-014-9678-x.
[35] Alecci, V., Focacci, F., Rovero, L., Stipo, G., & De Stefano, M. (2016). Extrados strengthening of brick masonry arches with PBO–FRCM composites: Experimental and analytical investigations. Composite Structures, 149, 184–196. doi:10.1016/j.compstruct.2016.04.030.
[36] Alecci, V., Focacci, F., Rovero, L., Stipo, G., & De Stefano, M. (2017). Intrados strengthening of brick masonry arches with different FRCM composites: Experimental and analytical investigations. Composite Structures, 176, 898–909. doi:10.1016/j.compstruct.2017.06.023.
[37] Carozzi, F. G., Poggi, C., Bertolesi, E., & Milani, G. (2018). Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Composite Structures, 187, 466–480. doi:10.1016/j.compstruct.2017.12.075.
[38] Gattesco, N., Boem, I., & Andretta, V. (2018). Experimental behaviour of non-structural masonry vaults reinforced through fibre-reinforced mortar coating and subjected to cyclic horizontal loads. Engineering Structures, 172, 419–431. doi:10.1016/j.engstruct.2018.06.044.
[39] Oliveira, D. V., Basilio, I., & Lourenço, P. B. (2010). Experimental Behavior of FRP Strengthened Masonry Arches. Journal of Composites for Construction, 14(3), 312–322. doi:10.1061/(asce)cc.1943-5614.0000086.
[40] Zampieri, P. (2020). Horizontal capacity of single-span masonry bridges with intrados FRCM strengthening. Composite Structures, 244, 112238. doi:10.1016/j.compstruct.2020.112238.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
