Strength, Water Porosity and Sulfuric Acid Performance of Coconut Fiber Reinforced High-Strength Concrete
Downloads
Doi: 10.28991/CEJ-2025-011-04-023
Full Text: PDF
[2] Liu, P., Zhou, X., Qian, Q., Berto, F., & Zhou, L. (2020). Dynamic splitting tensile properties of concrete and cement mortar. Fatigue and Fracture of Engineering Materials and Structures, 43(4), 757–770. doi:10.1111/ffe.13162.
[3] Mboungou Londe, G. H., Mwero, J. N., Kanali, C., & Abuodha, S. O. (2024). Investigating the Influence of Raw and Treated Coconut Fibre Obtained from Agricultural Residue on the Strength and Durability Characteristics of High-Strength Concrete. Advances in Civil Engineering, 2024. doi:10.1155/2024/8275876.
[4] Anurangi, J., Herath, M., Galhena, D. T. L., & Epaarachchi, J. (2023). The use of fibre reinforced polymer composites for construction of structural supercapacitors: a review. Advanced Composite Materials, 32(6), 942–986. doi:10.1080/09243046.2023.2180792.
[5] Mahboob, A., Hassanshahi, O., Safi, M., & Majid, T. A. (2024). Experimental investigation of eco-friendly fiber-reinforced concrete using recycled and natural fibers, integrated with recycled aggregates. Advanced Composite Materials, 33, 1101–30. doi:10.1080/09243046.2024.2322799.
[6] Rocha, D. L., Júnior, L. U. D. T., Marvila, M. T., Pereira, E. C., Souza, D., & de Azevedo, A. R. G. (2022). A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers, 14(10), 2043. doi:10.3390/polym14102043.
[7] Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504–515. doi:10.1016/j.conbuildmat.2018.06.158.
[8] Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alotman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, 713–729. doi:10.1016/j.conbuildmat.2018.04.143.
[9] Aarthipriya, V., & Umarani, C. (2025). An ecofriendly approach to explore the physical and mechanical properties of cement mortar reinforced with Abutilon indicum fibres. Materials Research Express, 12(1), 015102. doi:10.1088/2053-1591/ada7ca.
[10] Chavan, S., & Rao, P. (2016). Utilization of Waste PET bottle fibers in concrete as an Innovation in Building Materials. International Journal of Engineering Research, 5(1), 304-307.
[11] Alomayri, T., & Ali, B. (2023). Effect of plant fiber type and content on the strength and durability performance of high-strength concrete. Construction and Building Materials, 394(132166). doi:10.1016/j.conbuildmat.2023.132166.
[12] Liew, K. M., & Akbar, A. (2020). The recent progress of recycled steel fiber reinforced concrete. Construction and Building Materials, 232(117232). doi:10.1016/j.conbuildmat.2019.117232.
[13] Ahmad, J., & Zhou, Z. (2022). Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Construction and Building Materials, 333, 127353. doi:10.1016/j.conbuildmat.2022.127353.
[14] Jamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, M. L., Nazari, S., Chandan, V., Muller, M., & Choteborsky, R. (2022). Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials, 15(3), 874. doi:10.3390/ma15030874.
[15] Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. da C. G., & Azevedo, A. R. G. de. (2023). A Review of the Use of Coconut Fiber in Cement Composites. Polymers, 15(5), 1309. doi:10.3390/polym15051309.
[16] Zakaria, M., Ahmed, M., Hoque, M. M., & Islam, S. (2017). Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability, 2(1), 1–10. doi:10.1186/s40689-016-0022-5.
[17] . T. S. V. K. (2016). A Comparative Study of Jute Fiber Reinforced Concrete with Plain Cement Concrete. International Journal of Research in Engineering and Technology, 05(09), 111–116. doi:10.15623/ijret.2016.0509017.
[18] Fokam, C. B., Toumi, E., Kenmeugne, B., Meva'A, L., & Mansouri, K. (2020). Cement mortar reinforced with palm nuts naturals fibers: Study of the mechanical properties. Journal of Composites and Advanced Materials, 30(1), 9–13. doi:10.18280/rcma.300102.
[19] Soltanzadeh, F., Barros, J. A. O., & Santos, R. F. C. (2015). High performance fiber reinforced concrete for the shear reinforcement: Experimental and numerical research. Construction and Building Materials, 77, 94–109. doi:10.1016/j.conbuildmat.2014.12.003.
[20] Nambiar, R. A., & Haridharan, M. K. (2019). Mechanical and durability study of high performance concrete with addition of natural fiber (jute). Materials Today: Proceedings, 46, 4941–4947. doi:10.1016/j.matpr.2020.10.339.
[21] Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M., & Pilakoutas, K. (2018). Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 172, 533–543. doi:10.1016/j.conbuildmat.2018.04.010.
[22] Wuest, J., Denarié, E., Brühwiler, E., Tamarit, L., Kocher, M., & Gallucci, E. (2009). Tomography analysis of fiber distribution and orientation in ultra-high-performance fiber reinforced composites with high-fiber dosages. Experimental Techniques, 33(5), 50–55. doi:10.1111/j.1747-1567.2008.00420.x.
[23] Stähli, P., Custer, R., & Van Mier, J. G. M. (2008). On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Materials and Structures, 41(1), 189–196. doi:10.1617/s11527-007-9229-x.
[24] Tejchman, J., & Kozicki, J. (2010). Experimental and theoretical investigations of steel-fibrous concrete. Springer, Berlin, Germany. doi:10.1007/978-3-642-14603-9.
[25] Eik, M., Líµhmus, K., Tigasson, M., Listak, M., Puttonen, J., & Herrmann, H. (2013). DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. Journal of Materials Science, 48(10), 3745–3759. doi:10.1007/s10853-013-7174-3.
[26] Revilla-Cuesta, V., Faleschini, F., Pellegrino, C., Skaf, M., & Ortega-López, V. (2024). Water transport and porosity trends of concrete containing integral additions of raw-crushed wind-turbine blade. Developments in the Built Environment, 17, 100374. doi:10.1016/j.dibe.2024.100374.
[27] Santamaría, A., Orbe, A., San José, J. T., & González, J. J. (2018). A study on the durability of structural concrete incorporating electric steelmaking slags. Construction and Building Materials, 161, 94–111. doi:10.1016/j.conbuildmat.2017.11.121.
[28] Cantero, B., Sáez del Bosque, I. F., Sánchez de Rojas, M. I., Matías, A., & Medina, C. (2022). Durability of concretes bearing construction and demolition waste as cement and coarse aggregate substitutes. Cement and Concrete Composites, 134, 104722. doi:10.1016/j.cemconcomp.2022.104722.
[29] Faleschini, F., Alejandro Fernández-Ruíz, M., Zanini, M. A., Brunelli, K., Pellegrino, C., & Hernández-Montes, E. (2015). High performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties. Construction and Building Materials, 101, 113–121. doi:10.1016/j.conbuildmat.2015.10.022.
[30] Vu, V. H., Tran, B. V., Hoang, V. H., & Nguyen, T. H. G. (2022). The Effect of Porosity on the Elastic Modulus and Strength of Pervious Concrete. Lecture Notes in Mechanical Engineering, 823–829. doi:10.1007/978-981-16-3239-6_63.
[31] Revilla-Cuesta, V., Skaf, M., Santamaría, A., Romera, J. M., & Ortega-López, V. (2022). Elastic stiffness estimation of aggregate–ITZ system of concrete through matrix porosity and volumetric considerations: explanation and exemplification. Archives of Civil and Mechanical Engineering, 22(2), 59. doi:10.1007/s43452-022-00382-z.
[32] Abhilash, P. P., Nayak, D. K., Sangoju, B., Kumar, R., & Kumar, V. (2021). Effect of nano-silica in concrete; a review. Construction and Building Materials, 278, 122347. doi:10.1016/j.conbuildmat.2021.122347.
[33] Moore, A. J., Bakera, A. T., & Alexander, M. G. (2021). A critical review of the Water Sorptivity Index (WSI) parameter for potential durability assessment: Can WSI be considered in isolation of porosity? Journal of the South African Institution of Civil Engineering, 63(2), 27–34. doi:10.17159/2309-8775/2021/v63n2a4.
[34] Rahman, S., Grasley, Z., Masad, E., Zollinger, D., Iyengar, S., & Kogbara, R. (2016). Simulation of Mass, Linear Momentum, and Energy Transport in Concrete with Varying Moisture Content during Cooling to Cryogenic Temperatures. Transport in Porous Media, 112(1), 139–166. doi:10.1007/s11242-016-0636-8.
[35] Sivamani, J., & Renganathan, N. T. (2022). Effect of fine recycled aggregate on the strength and durability properties of concrete modified through two-stage mixing approach. Environmental Science and Pollution Research, 29(57), 85869–85882. doi:10.1007/s11356-021-14420-5.
[36] Cantero, B., Sáez del Bosque, I. F., Matías, A., Sánchez de Rojas, M. I., & Medina, C. (2020). Water transport mechanisms in concretes bearing mixed recycled aggregates. Cement and Concrete Composites, 107, 103486. doi:10.1016/j.cemconcomp.2019.103486.
[37] Villagrán Zaccardi, Y. A., Alderete, N. M., & De Belie, N. (2017). Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time. Cement and Concrete Research, 100, 153–165. doi:10.1016/j.cemconres.2017.07.003.
[38] Joorabchian, S. M. (2010). Durability of concrete exposed to sulfuric acid attack. Doctoral Dissertation, Toronto Metropolitan University, Toronto, Canada.
[39] Vélez, E., Rodríguez, R., Yanchapanta Gómez, N. B., Mora, E. D., Hernández, L., Albuja-Sánchez, J., & Calvo, M. I. (2022). Coconut-Fiber Composite Concrete: Assessment of Mechanical Performance and Environmental Benefits. Fibers, 10(11), 96. doi:10.3390/fib10110096.
[40] Lv, C., & Liu, J. (2023). Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review. Molecules, 28(4), 1868. doi:10.3390/molecules28041868.
[41] Rocha Ferreira, S., Ukrainczyk, N., Defáveri do Carmo e Silva, K., Eduardo Silva, L., & Koenders, E. (2021). Effect of microcrystalline cellulose on geopolymer and Portland cement pastes mechanical performance. Construction and Building Materials, 288, 123053. doi:10.1016/j.conbuildmat.2021.123053.
[42] da Costa Correia, V., Ardanuy, M., Claramunt, J., & Savastano, H. (2019). Assessment of chemical and mechanical behavior of bamboo pulp and Nano fibrillated cellulose exposed to alkaline environments. Cellulose, 26(17), 9269–9285. doi:10.1007/s10570-019-02703-7.
[43] Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1–16. doi:10.1016/j.cemconres.2015.02.019.
[44] Labib, W. A. (2022). Plant-based fibres in cement composites: A conceptual framework. Journal of Engineered Fibers and Fabrics, 17. doi:10.1177/15589250221078922.
[45] Hamada, H. M., Shi, J., Al Jawahery, M. S., Majdi, A., Yousif, S. T., & Kaplan, G. (2023). Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 35, 105833. doi:10.1016/j.mtcomm.2023.105833.
[46] Antwi-Afari, B. A., Mutuku, R., Kabubo, C., Mwero, J., & Mengo, W. K. (2024). Influence of fiber treatment methods on the mechanical properties of high strength concrete reinforced with sisal fibers. Heliyon, 10(8), e29760. doi:10.1016/j.heliyon.2024.e29760.
[47] Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites”A review. Journal of Industrial Textiles, 47(8), 2153–2183. doi:10.1177/1528083716654468.
[48] Yavuz Bayraktar, O., Kaplan, G., Shi, J., Benli, A., Bodur, B., & Turkoglu, M. (2023). The effect of steel fiber aspect-ratio and content on the fresh, flexural, and mechanical performance of concrete made with recycled fine aggregate. Construction and Building Materials, 368, 130497. doi:10.1016/j.conbuildmat.2023.130497.
[49] Tran, N. P., Gunasekara, C., Law, D. W., Houshyar, S., & Setunge, S. (2022). Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Construction and Building Materials, 335, 127497. doi:10.1016/j.conbuildmat.2022.127497.
[50] Ortega-López, V., Revilla-Cuesta, V., Santamaría, A., Orbe, A., & Skaf, M. (2022). Microstructure and Dimensional Stability of Slag-Based High-Workability Concrete with Steelmaking Slag Aggregate and Fibers. Journal of Materials in Civil Engineering, 34(9), 04022224. doi:10.1061/(asce)mt.1943-5533.0004372.
[51] Camille, C., Kahagala Hewage, D., Mirza, O., Mashiri, F., Kirkland, B., & Clarke, T. (2021). Performance behaviour of macro-synthetic fibre reinforced concrete subjected to static and dynamic loadings for sleeper applications. Construction and Building Materials, 270, 121469. doi:10.1016/j.conbuildmat.2020.121469.
[52] Xie, J., Kou, S. cong, Ma, H., Long, W. J., Wang, Y., & Ye, T. H. (2021). Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models. Construction and Building Materials, 277, 122345. doi:10.1016/j.conbuildmat.2021.122345.
[53] Muthukumarana, T. V., Arachchi, M. A. V. H. M., Somarathna, H. M. C. C., & Raman, S. N. (2023). A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Construction and Building Materials, 366, 130173. doi:10.1016/j.conbuildmat.2022.130173.
[54] EN 197-1. (2000). Cement - Part 1: Composition, Speciï¬cations and Conformity Criteria for Common Cements Ciment. European Standard, 1–29.
[55] ASTM C33. (2013). Standard speciï¬cation for concrete aggregates. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[56] C136/C136M–14. (2014). Standard test method for sieve analysis of fine and coarse aggregates. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[57] BS812-2:1995. (2004). Testing aggregates Part 2. Methods of determination of density Corrected. British Standard, London, United Kingdom.
[58] ASTM C127. (2004). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[59] BS 812-112:1990. (1990). Testing aggregates- part 112: Methods for determination of aggregate impact value (AIV). British Standard, London, United Kingdom.
[60] BS 812-110: 1990. (1990). Testing aggregates - part 110: Methods for determination of aggregate crushing value (ACV). British Standard, London, United Kingdom.
[61] ACI 211.4R. (2008). Guide for Selecting Proportions for High-strength Concrete Using Portland Cement and Other Cementitious Materials. ACI Committee 211, 1–25.
[62] BS EN 12390-3. (2009). Testing hardened concrete - Part 3: Compressive strength of test specimens. BSI Standards, 38(10), 18.
[63] BS EN 12390-6. (2009). Testing hardened concrete - Part 6: Tensile splitting strength of test specimens. BSI Standards, 1–14.
[64] BS EN 12390-5. (2009). Testing hardened concrete - Part 5: Flexural strength of test specimens. BSI Standards, 1–22.
[65] ASTM C1018. (1998). Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[66] DaukŠ¡ys, M., Ivanauskas, E., JuoÄiunas, S., Pupeikis, D., & Š eduikyte, L. (2012). The assessment of prediction methodology of concrete freezing and thawing resistance. Medziagotyra, 18(4), 403–409. doi:10.5755/j01.ms.18.4.3105.
[67] ASTM C 267. (2001). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[68] Raju, J. S. N., Depoures, M. V., & Kumaran, P. (2021). Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. International Journal of Biological Macromolecules, 186, 886–896. doi:10.1016/j.ijbiomac.2021.07.061.
[69] Mulinari, D. R., Baptista, C. A. R. P., Souza, J. V. C., & Voorwald, H. J. C. (2011). Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering, 10, 2074–2079. doi:10.1016/j.proeng.2011.04.343.
[70] Zamboni Schiavon, J., & de Oliveira Andrade, J. J. (2023). Comparison between alternative chemical treatments on coir fibers for application in cementitious materials. Journal of Materials Research and Technology, 25, 4634–4649. doi:10.1016/j.jmrt.2023.06.210.
[71] Reddy, K. O., Reddy, K. R. N., Zhang, J., Zhang, J., & Varada Rajulu, A. (2013). Effect of Alkali Treatment on the Properties of Century Fiber. Journal of Natural Fibers, 10(3), 282–296. doi:10.1080/15440478.2013.800812.
[72] ASTM C143/C143M. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[73] Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A. F., Althoey, F., El Ouni, M. H., & El-Shorbagy, M. A. (2022). Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials, 15(10), 3601. doi:10.3390/ma15103601.
[74] Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Alyousef, R., Abduljabbar, H. Al, & Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075. doi:10.3390/ma13051075.
[75] Ahmad, J., Zaid, O., Siddique, M. S., Aslam, F., Alabduljabbar, H., & Khedher, K. M. (2021). Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder. Materials Research Express, 8(7), 075505. doi:10.1088/2053-1591/ac10d3.
[76] Sivakumaresa Chockalingam, L. N., & Rymond, N. M. (2022). Strength and Durability Characteristics of Coir, Kenaf and Polypropylene Fibers Reinforced High Performance Concrete. Journal of Natural Fibers, 19(13), 6692–6700. doi:10.1080/15440478.2021.1929656.
[77] Okeola, A. A., Abuodha, S. O., & Mwero, J. (2018). Experimental investigation of the physical and mechanical properties of sisal fiber-reinforced concrete. Fibers, 6(3), 53. doi:10.3390/fib6030053.
[78] Ren, G., Yao, B., Huang, H., & Gao, X. (2021). Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Construction and Building Materials, 286, 122958. doi:10.1016/j.conbuildmat.2021.122958.
[79] Bentchikou, M., Guidoum, A., Scrivener, K., Silhadi, K., & Hanini, S. (2012). Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Construction and Building Materials, 34, 451–456. doi:10.1016/j.conbuildmat.2012.02.097.
[80] Bui, H., Sebaibi, N., Boutouil, M., & Levacher, D. (2020). Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers, 8(6), 37. doi:10.3390/FIB8060037.
[81] Naamandadin, N. A., Rosdi, M. S., Mustafa, W. A., Shahrol Aman, M. N. S., & Saidi, S. A. (2020). Mechanical behaviour on concrete of coconut coir fiber as additive. IOP Conference Series: Materials Science and Engineering, 932(1), 012098. doi:10.1088/1757-899X/932/1/012098.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
