Fire Behavior of Concrete Beams Reinforced with Various Combinations of GFRP and Steel
Downloads
Doi: 10.28991/CEJ-2025-011-05-018
Full Text: PDF
[2] Djamaluddin, R., Irmawaty, R., Fakhruddin, & Yamaguchi, K. (2024). Flexural Behavior of Repaired Reinforced Concrete Beams Due to Corrosion of Steel Reinforcement Using Grouting and FRP Sheet Strengthening. Civil Engineering Journal (Iran), 10(1), 222–233. doi:10.28991/CEJ-2024-010-01-014.
[3] Ge, W., Zhang, J., Cao, D., & Tu, Y. (2015). Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars. Construction and Building Materials, 87, 28–37. doi:10.1016/j.conbuildmat.2015.03.113.
[4] El Refai, A., Abed, F., & Al-Rahmani, A. (2015). Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Construction and Building Materials, 96, 518–529. doi:10.1016/j.conbuildmat.2015.08.063.
[5] Pang, L., Qu, W., Zhu, P., & Xu, J. (2016). Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams. Journal of Composites for Construction, 20(4), 04015086. doi:10.1061/(asce)cc.1943-5614.0000654.
[6] Qin, R., Zhou, A., & Lau, D. (2017). Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams. Composites Part B: Engineering, 108, 200–209. doi:10.1016/j.compositesb.2016.09.054.
[7] Barris, C., Torres, L., Turon, A., Baena, M., & Catalan, A. (2009). An experimental study of the flexural behaviour of GFRP RC beams and comparison with prediction models. Composite Structures, 91(3), 286–295. doi:10.1016/j.compstruct.2009.05.005.
[8] ACI 440.1R-06. (2005). Guide for the design and construction of concrete reinforced with FRP bars. American Concrete Institute (ACI), Michigan, United States.
[9] EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings European Committee for Standardization, Brussels, Belgium.
[10] Qu, W., Zhang, X., & Huang, H. (2009). Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars. Journal of Composites for Construction, 13(5), 350–359. doi:10.1061/(asce)cc.1943-5614.0000035.
[11] Lau, D., & Pam, H. J. (2010). Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures, 32(12), 3857–3865. doi:10.1016/j.engstruct.2010.08.028.
[12] Kara, I. F., Ashour, A. F., & Köroğlu, M. A. (2015). Flexural behavior of hybrid FRP/steel reinforced concrete beams. Composite Structures, 129, 111–121. doi:10.1016/j.compstruct.2015.03.073.
[13] Araba, A. M., & Ashour, A. F. (2018). Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Composites Part B: Engineering, 154, 321–336. doi:10.1016/j.compositesb.2018.08.077.
[14] Duic, J., Kenno, S., & Das, S. (2018). Performance of concrete beams reinforced with basalt fibre composite rebar. Construction and Building Materials, 176, 470–481. doi:10.1016/j.conbuildmat.2018.04.208.
[15] Abbas, H., Abadel, A., Almusallam, T., & Al-Salloum, Y. (2022). Experimental and analytical study of flexural performance of concrete beams reinforced with hybrid of GFRP and steel rebars. Engineering Failure Analysis, 138(106397). doi:10.1016/j.engfailanal.2022.106397.
[16] Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.
[17] Abdalla, H. A. (2002). Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars. Composite Structures, 56(1), 63–71. doi:10.1016/S0263-8223(01)00188-X.
[18] Terzioglu, H., Eryilmaz Yildirim, M., Karagoz, O., Unluoglu, E., & Dogan, M. (2024). Flexural behavior of concrete beams hybrid-reinforced with glass fiber-reinforced polymer, carbon fiber-reinforced polymer, and steel rebars. Advances in Structural Engineering, 27(5), 775–795. doi:10.1177/13694332241232051.
[19] Dang Vu, H., Kawai, K., Dang, V. Q., & Nguyen Phan, D. (2025). The pre-cracked hybrid GFRP-steel RC beams strengthened with CFRP sheet: experiment and strength prediction. European Journal of Environmental and Civil Engineering, 2025, 1–24. doi:10.1080/19648189.2024.2448667.
[20] Adem Yimer, M., & Dey, T. (2024). Dynamic response of concrete beams reinforced with GFRP and steel bars under impact loading. Engineering Failure Analysis, 161(108329). doi:10.1016/j.engfailanal.2024.108329.
[21] Puzach, S., Liubov, L., Кamchatova, E., Nosova, L., Degtyareva, V., Tarasova, V., & Komarova, L. (2024). Development of a Method for Increasing the Fire Resistance of Cast-iron Structures of Cultural Heritage Sites under Reconstruction. Civil Engineering Journal (Iran), 10(2), 555–570. doi:10.28991/CEJ-2024-010-02-015.
[22] Shubbar, H. A., & Alwash, N. A. (2020). The fire exposure effect on hybrid reinforced reactive powder concrete columns. Civil Engineering Journal (Iran), 6(2), 363–374. doi:10.28991/cej-2020-03091476.
[23] Rafi, M. M., & Nadjai, A. (2011). Behavior of hybrid (steel-CFRP) and CFRP bar-reinforced concrete beams in fire. Journal of Composite Materials, 45(15), 1573–1584. doi:10.1177/0021998310385022.
[24] Rafi, M. M., & Nadjai, A. (2013). Numerical modelling of carbon fibre-reinforced polymer and hybrid reinforced concrete beams in fire. Fire and Materials, 37(5), 374–390. doi:10.1002/fam.2135.
[25] Tian, J., Zhu, P., & Qu, W. (2019). Study on fire resistance time of hybrid reinforced concrete beams. Structural Concrete, 20(6), 1941–1954. doi:10.1002/suco.201800320.
[26] Albu-Hassan, N. H., & Al-Thairy, H. (2020). Experimental and numerical investigation on the behavior of hybrid concrete beams reinforced with GFRP bars after exposure to elevated temperature. Structures, 28, 537–551. doi:10.1016/j.istruc.2020.08.079.
[27] Al-Thairy, H. (2020). A simplified method for steady state and transient state thermal analysis of hybrid steel and FRP RC beams at fire. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00465.
[28] Hassan, A., Khairallah, F., Elsayed, H., Salman, A., & Mamdouh, H. (2021). Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure. Engineering Structures, 238, 112251. doi:10.1016/j.engstruct.2021.112251.
[29] Saafi, M. (2002). Effect of fire on FRP reinforced concrete members. Composite Structures, 58(1), 11–20. doi:10.1016/S0263-8223(02)00045-4.
[30] Said, M., Hamdy, H., El-Sayed, A. A., & Khalil, M. M. (2024). Structural efficiency of concrete beams reinforced with hybrid reinforcement bars under thermal loads. Journal of Building Engineering, 92, 109678. doi:10.1016/j.jobe.2024.109678.
[31] Mamdouh, H., Mehany, M., Ibrahim, W. M., Mohamed, H. M., & Ali, A. H. (2024). Concrete contribution to shear resistance of GFRP-RC beams under fire exposure. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e04109.
[32] Cao, V. Van, & Nguyen, V. N. (2022). Flexural Performance of Postfire Reinforced Concrete Beams: Experiments and Theoretical Analysis. Journal of Performance of Constructed Facilities, 36(3), 04022029. doi:10.1061/(asce)cf.1943-5509.0001739.
[33] Nigro, E., Bilotta, A., Cefarelli, G., Manfredi, G., & Cosenza, E. (2012). Performance under Fire Situations of Concrete Members Reinforced with FRP Rods: Bond Models and Design Nomograms. Journal of Composites for Construction, 16(4), 395–406. doi:10.1061/(asce)cc.1943-5614.0000279.
[34] Rosa, I. C., Firmo, J. P., Correia, J. R., & Bisby, L. A. (2023). Fire Behavior of GFRP-Reinforced Concrete Structural Members: A State-of-the-Art Review. Journal of Composites for Construction, 27(5), 03123002. doi:10.1061/jccof2.cceng-4268.
[35] Gernay, T., & Franssen, J. M. (2012). A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Safety Journal, 51, 1–9. doi:10.1016/j.firesaf.2012.02.001.
[36] Song, Y., Fu, C., Liang, S., Yin, A., & Dang, L. (2019). Fire Resistance Investigation of Simple Supported RC Beams with Varying Reinforcement Configurations. Advances in Civil Engineering, 8625360. doi:10.1155/2019/8625360.
[37] Song, Y., Fu, C., Liang, S., Li, D., Dang, L., Sun, C., & Kong, W. (2020). Residual Shear Capacity of Reinforced Concrete Beams after Fire Exposure. KSCE Journal of Civil Engineering, 24(11), 3330–3341. doi:10.1007/s12205-020-1758-7.
[38] GangaRao, H. V. S., Taly, N., & Vijay, P. V. (2006). Reinforced Concrete Design with FRP Composites. CRC Press, Boca Raton, United States. doi:10.1201/9781420020199.
[39] Yu, B., & Kodur, V. K. R. (2013). Factors governing the fire response of concrete beams reinforced with FRP rebars. Composite Structures, 100, 257–269. doi:10.1016/j.compstruct.2012.12.028.
[40] BS EN 1363-1:2020. (2020). TC Fire resistance tests - General requirements. British Standard (BSI), London, United Kingdom.
[41] Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.
[42] Kodur, V. K. R. (2004). Spalling in high strength concrete exposed to fire - Concerns, causes, critical parameters and cures. Structures Congress 2000: Advanced Technology in Structural Engineering, 103, 1–9. doi:10.1061/40492(2000)180.
[43] Kodur, V. K. R., & Dwaikat, M. (2007). Performance-based fire safety design of reinforced concrete beams. Journal of Fire Protection Engineering, 17(4), 293–320. doi:10.1177/1042391507077198.
[44] Dwaikat, M. B., & Kodur, V. K. R. (2009). Response of Restrained Concrete Beams under Design Fire Exposure. Journal of Structural Engineering, 135(11), 1408–1417. doi:10.1061/(asce)st.1943-541x.0000058.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
