Numerical Analysis of the Shear Behavior of Shallow-Wide Concrete Beams via the Concrete Damage Plasticity Model
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-022
Full Text: PDF
Dejene, H., Bogale, M., & Rynkovskaya, M. (2025). Numerical Analysis of the Shear Behavior of Shallow-Wide Concrete Beams via the Concrete Damage Plasticity Model. Civil Engineering Journal, 11(2), 779–797. https://doi.org/10.28991/CEJ-2025-011-02-022
[1] Elansary, A. A., Elnazlawy, Y. Y., & Abdalla, H. A. (2022). Shear behaviour of concrete wide beams with spiral lateral reinforcement. Australian Journal of Civil Engineering, 20(1), 174–194. doi:10.1080/14488353.2021.1942405.
[2] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Aspect Ratio, Characteristic Strength and Compression Rebars on the Shear Capacity of Shallow RC Beams. Civil Engineering Journal (Iran), 9(9), 2259–2271. doi:10.28991/CEJ-2023-09-09-012.
[3] Elsayed, M., Badawy, S., Tayeh, B. A., Elymany, M., Salem, M., & ElGawady, M. (2022). Shear behaviour of ultra-high performance concrete beams with openings. Structures, 43, 546-558. doi:10.1016/j.istruc.2022.06.071.
[4] Alluqmani, A. E. (2020). Effect of the transversal-spacing of stirrup-legs on the behavior and strength of shallow concealed RC beams. Journal of Engineering, Design and Technology, 19(4), 932–942. doi:10.1108/JEDT-06-2020-0224.
[5] Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. Bin, & Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), 68–78. doi:10.2749/101686616X1081.
[6] Mahmoud, S. M., Mabrouk, R. T. S., & Kassem, M. E. (2021). Behavior of RC wide beams under eccentric loading. Civil Engineering Journal (Iran), 7(11), 1880–1897. doi:10.28991/cej-2021-03091766.
[7] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Shear Reinforcement Amount and Arrangement on the Shear Capacity of Shallow RC Beams: An Experimental Study. Civil Engineering Journal (Iran), 9(12), 3147–3160. doi:10.28991/CEJ-2023-09-12-013.
[8] Said, M., & Elrakib, T. M. (2013). Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement. HBRC Journal, 9(3), 235–242. doi:10.1016/j.hbrcj.2013.05.011.
[9] Luk, S. H., & Kuang, J. S. (2017). Seismic performance and force transfer of wide beam-column joints in concrete buildings. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 170(2), 71–88. doi:10.1680/jencm.15.00024.
[10] Luu, X. B., Kim, S. K., & Kim, W. (2023). Investigation of Load–Displacement Characteristics and Crack Behavior of RC Beam Based on Nonlinear Finite Element Analysis Using Concrete Damage Plasticity. Applied Sciences (Switzerland), 13(21), 11798. doi:10.3390/app132111798.
[11] Rai, P. (2021). Non-Linear Finite Element Analysis of RC Deep Beam Using CDP Model. Advances in Technology Innovation, 6(1), 01–10. doi:10.46604/aiti.2021.5407.
[12] Al-Sebai, H., Al-Sadoon, Z. A., Altoubat, S., & Maalej, M. (2024). Constitutive Relations for Modelling Macro Synthetic Fiber Reinforced Concrete. Civil Engineering Journal, 10(6), 1806-1827. doi:10.28991/CEJ-2024-010-06-06.
[13] Behnam, H., Kuang, J. S., & Samali, B. (2018). Parametric finite element analysis of RC wide beam-column connections. Computers & Structures, 205, 28–44. doi:10.1016/j.compstruc.2018.04.004.
[14] Raza, A., Khan, Q. U. Z., & Ahmad, A. (2019). Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in Abaqus. Advances in Civil Engineering, 2019(1), 1745341. doi:10.1155/2019/1745341.
[15] Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. doi:10.1016/j.engstruct.2015.04.016.
[16] Silva, L. M. e, Christoforo, A. L., & Carvalho, R. C. (2021). Calibration of Concrete Damaged Plasticity Model parameters for shear walls. Matéria (Rio de Janeiro), 26(1). doi:10.1590/s1517-707620210001.1244.
[17] Szczecina, M., & Winnicki, A. (2017). Relaxation Time in CDP Model Used for Analyses of RC Structures. Procedia Engineering, 193, 369–376. doi:10.1016/j.proeng.2017.06.226.
[18] Khalil, A. E. H., Etman, E., Atta, A., Baraghith, A., & Behiry, R. (2019). The Effective Width in Shear Design of Wide-shallow Beams: A Comparative Study. KSCE Journal of Civil Engineering, 23(4), 1670–1681. doi:10.1007/s12205-019-0830-7.
[19] EN 1998-1. (2004) Euro Code 8-Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels, Belgium.
[20] Moubarak, A. M. R., Elwardany, H., Abu El-hassan, K., & El-Din Taher, S. (2022). Shear strengthening of wide-shallow beams by inserted fasteners. Engineering Structures, 268, 114554. doi:10.1016/j.engstruct.2022.114554.
[21] Akinpelu, M. A., Gabriel, D. S., Salman, A. M., & Raheem, I. A. (2023). Numerical study on the effect of different column shapes on punching shear behavior of flat slabs. Results in Engineering, 19, 101345. doi:10.1016/j.rineng.2023.101345.
[22] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2024). Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach. Scientific Reports, 14(1), 12523. doi:10.1038/s41598-024-62532-y.
[23] ABAQUS (2024). Abaqus Finite Element Analysis | SIMULIA. Dassault SystèmesÙˆ Vélizy-Villacoublay, France.
[24] Allam, S. M., Shoukry, M. S., Rashad, G. E., & Hassan, A. S. (2013). Evaluation of tension stiffening effect on the crack width calculation of flexural RC members. Alexandria Engineering Journal, 52(2), 163–173. doi:10.1016/j.aej.2012.12.005.
[25] Wosatko, A., Pamin, J., & Polak, M. A. (2015). Application of damage–plasticity models in finite element analysis of punching shear. Computers & Structures, 151, 73-85. doi:10.1016/j.compstruc.2015.01.008.
[26] De Domenico, D., & Ricciardi, G. (2019). Shear strength of RC beams with stirrups using an improved Eurocode 2 truss model with two variable-inclination compression struts. Engineering Structures, 198, 109359. doi:10.1016/j.engstruct.2019.109359.
[27] Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493-2510. doi:10.1016/j.asej.2021.02.006.
[2] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Aspect Ratio, Characteristic Strength and Compression Rebars on the Shear Capacity of Shallow RC Beams. Civil Engineering Journal (Iran), 9(9), 2259–2271. doi:10.28991/CEJ-2023-09-09-012.
[3] Elsayed, M., Badawy, S., Tayeh, B. A., Elymany, M., Salem, M., & ElGawady, M. (2022). Shear behaviour of ultra-high performance concrete beams with openings. Structures, 43, 546-558. doi:10.1016/j.istruc.2022.06.071.
[4] Alluqmani, A. E. (2020). Effect of the transversal-spacing of stirrup-legs on the behavior and strength of shallow concealed RC beams. Journal of Engineering, Design and Technology, 19(4), 932–942. doi:10.1108/JEDT-06-2020-0224.
[5] Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. Bin, & Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), 68–78. doi:10.2749/101686616X1081.
[6] Mahmoud, S. M., Mabrouk, R. T. S., & Kassem, M. E. (2021). Behavior of RC wide beams under eccentric loading. Civil Engineering Journal (Iran), 7(11), 1880–1897. doi:10.28991/cej-2021-03091766.
[7] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2023). The Impact of Shear Reinforcement Amount and Arrangement on the Shear Capacity of Shallow RC Beams: An Experimental Study. Civil Engineering Journal (Iran), 9(12), 3147–3160. doi:10.28991/CEJ-2023-09-12-013.
[8] Said, M., & Elrakib, T. M. (2013). Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement. HBRC Journal, 9(3), 235–242. doi:10.1016/j.hbrcj.2013.05.011.
[9] Luk, S. H., & Kuang, J. S. (2017). Seismic performance and force transfer of wide beam-column joints in concrete buildings. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 170(2), 71–88. doi:10.1680/jencm.15.00024.
[10] Luu, X. B., Kim, S. K., & Kim, W. (2023). Investigation of Load–Displacement Characteristics and Crack Behavior of RC Beam Based on Nonlinear Finite Element Analysis Using Concrete Damage Plasticity. Applied Sciences (Switzerland), 13(21), 11798. doi:10.3390/app132111798.
[11] Rai, P. (2021). Non-Linear Finite Element Analysis of RC Deep Beam Using CDP Model. Advances in Technology Innovation, 6(1), 01–10. doi:10.46604/aiti.2021.5407.
[12] Al-Sebai, H., Al-Sadoon, Z. A., Altoubat, S., & Maalej, M. (2024). Constitutive Relations for Modelling Macro Synthetic Fiber Reinforced Concrete. Civil Engineering Journal, 10(6), 1806-1827. doi:10.28991/CEJ-2024-010-06-06.
[13] Behnam, H., Kuang, J. S., & Samali, B. (2018). Parametric finite element analysis of RC wide beam-column connections. Computers & Structures, 205, 28–44. doi:10.1016/j.compstruc.2018.04.004.
[14] Raza, A., Khan, Q. U. Z., & Ahmad, A. (2019). Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in Abaqus. Advances in Civil Engineering, 2019(1), 1745341. doi:10.1155/2019/1745341.
[15] Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. doi:10.1016/j.engstruct.2015.04.016.
[16] Silva, L. M. e, Christoforo, A. L., & Carvalho, R. C. (2021). Calibration of Concrete Damaged Plasticity Model parameters for shear walls. Matéria (Rio de Janeiro), 26(1). doi:10.1590/s1517-707620210001.1244.
[17] Szczecina, M., & Winnicki, A. (2017). Relaxation Time in CDP Model Used for Analyses of RC Structures. Procedia Engineering, 193, 369–376. doi:10.1016/j.proeng.2017.06.226.
[18] Khalil, A. E. H., Etman, E., Atta, A., Baraghith, A., & Behiry, R. (2019). The Effective Width in Shear Design of Wide-shallow Beams: A Comparative Study. KSCE Journal of Civil Engineering, 23(4), 1670–1681. doi:10.1007/s12205-019-0830-7.
[19] EN 1998-1. (2004) Euro Code 8-Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels, Belgium.
[20] Moubarak, A. M. R., Elwardany, H., Abu El-hassan, K., & El-Din Taher, S. (2022). Shear strengthening of wide-shallow beams by inserted fasteners. Engineering Structures, 268, 114554. doi:10.1016/j.engstruct.2022.114554.
[21] Akinpelu, M. A., Gabriel, D. S., Salman, A. M., & Raheem, I. A. (2023). Numerical study on the effect of different column shapes on punching shear behavior of flat slabs. Results in Engineering, 19, 101345. doi:10.1016/j.rineng.2023.101345.
[22] Soliman, A. A., Mansour, D. M., Khalil, A. H., & Ebid, A. (2024). Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach. Scientific Reports, 14(1), 12523. doi:10.1038/s41598-024-62532-y.
[23] ABAQUS (2024). Abaqus Finite Element Analysis | SIMULIA. Dassault SystèmesÙˆ Vélizy-Villacoublay, France.
[24] Allam, S. M., Shoukry, M. S., Rashad, G. E., & Hassan, A. S. (2013). Evaluation of tension stiffening effect on the crack width calculation of flexural RC members. Alexandria Engineering Journal, 52(2), 163–173. doi:10.1016/j.aej.2012.12.005.
[25] Wosatko, A., Pamin, J., & Polak, M. A. (2015). Application of damage–plasticity models in finite element analysis of punching shear. Computers & Structures, 151, 73-85. doi:10.1016/j.compstruc.2015.01.008.
[26] De Domenico, D., & Ricciardi, G. (2019). Shear strength of RC beams with stirrups using an improved Eurocode 2 truss model with two variable-inclination compression struts. Engineering Structures, 198, 109359. doi:10.1016/j.engstruct.2019.109359.
[27] Ebid, A. M., & Deifalla, A. (2021). Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Engineering Journal, 12(3), 2493-2510. doi:10.1016/j.asej.2021.02.006.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
