Engineering and Microstructure Properties of Soft Clay Improved with Ordinary Portland Cement and Polymers
Downloads
Doi: 10.28991/CEJ-2025-011-04-022
Full Text: PDF
[2] Suksiripattanapong, C., Sakdinakorn, R., Tiyasangthong, S., Wonglakorn, N., Phetchuay, C., & Tabyang, W. (2022). Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application. Case Studies in Construction Materials, 16, 1081. doi:10.1016/j.cscm.2022.e01081.
[3] Güllü, H., Al Nuaimi, M. M., & Aytek, A. (2021). Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing. Bulletin of Engineering Geology and the Environment, 80, 1103-1123. doi:10.1007/s10064-020-01998-2.
[4] Novikov, M. B., Roos, A., Creton, C., & Feldstein, M. M. (2003). Dynamic mechanical and tensile properties of poly(N-vinyl pyrrolidone)-poly (ethylene glycol) blends. Polymer, 44(12), 3561–3578. doi:10.1016/S0032-3861(03)00132-0.
[5] Cao, Y., Zhang, J., Xu, G., Li, M., & Bian, X. (2022). Strength Properties and Prediction Model of Cement-Solidified Clay Considering Organic Matter and Curing Temperature. Frontiers in Materials, 9, 965975. doi:10.3389/fmats.2022.965975.
[6] Phojan, W., Luepongpattana, S., Wonglakorn, N., Thumrongvut, J., Tabyang, W., Keawsawasvong, S., & Suksiripattanapong, C. (2023). Mechanical and environmental characteristics of high calcium fly ash geopolymer stabilized soft Bangkok clay contaminated with zinc sludge. Case Studies in Chemical and Environmental Engineering, 8, 100480. doi:10.1016/j.cscee.2023.100480.
[7] Tesanasin, T., Suksiripattanapong, C., Kuasakul, T., Thongkhwan, T., Tabyang, W., Thumrongvut, J., & Keawsawasvong, S. (2024). Comparison Between Cement-Rice Husk Ash and Cement-Rice Husk Ash One-Part Geopolymer for Stabilized Soft Clay as Deep Mixing Material. Transportation Infrastructure Geotechnology, 11(4), 1760–1776. doi:10.1007/s40515-023-00345-8.
[8] Vichan, S., & Rachan, R. (2013). Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash. Soils and Foundations, 53(2), 272–281. doi:10.1016/j.sandf.2013.02.007.
[9] Al-Dalain, N. A. W., Ezreig, A. M. A., & Ismail, M. A. M. (2024). Numerical Analysis of Time-Dependent Strength and Stiffness in Palm Oil Fuel Ash-Stabilized Soil: Early and Long-Term Effects. Civil Engineering Journal (Iran), 10(Special Issue), 62–81. doi:10.28991/CEJ-SP2024-010-05.
[10] Alam, S., & Alselami, N. A. (2024). Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review. Civil Engineering Journal (Iran), 10(Special Issue), 82–103. doi:10.28991/CEJ-SP2024-010-06.
[11] Nugroho, S. A., Retno Wardani, S. P., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal (Iran), 10(11), 3603–3612. doi:10.28991/CEJ-2024-010-11-010.
[12] Liu, L., Zhou, A., Deng, Y., Cui, Y., Yu, Z., & Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. Construction and Building Materials, 211, 909–918. doi:10.1016/j.conbuildmat.2019.03.256.
[13] Huang, K., Fang, Z., Cai, G., Shi, X., Huang, K., He, Y., Duan, W., & Tian, N. (2024). Macro and microscopic characteristics of soft soil stabilized by Portland cement-soda residue under dry-wet cycling. Construction and Building Materials, 428, 136347. doi:10.1016/j.conbuildmat.2024.136347.
[14] Bayesteh, H., & Hezareh, H. (2023). Behavior of cement-stabilized marine clay and pure clay minerals exposed to high salinity grout. Construction and Building Materials, 383, 131334. doi:10.1016/j.conbuildmat.2023.131334.
[15] Xu, M., Liu, L., Deng, Y., Zhou, A., Gu, S., & Ding, J. (2021). Influence of sand incorporation on unconfined compression strength of cement-based stabilized soft clay. Soils and Foundations, 61(4), 1132–1141. doi:10.1016/j.sandf.2021.06.008.
[16] Wu, J., Liu, L., Deng, Y., Zhang, G., Zhou, A., & Xiao, H. (2022). Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 909–921. doi:10.1016/j.jrmge.2021.10.002.
[17] Wu, J., Liu, S., Deng, Y., Zhang, G., & Zhan, L. (2022). Microscopic phase identification of cement-stabilized clay by nanoindentation and statistical analytics. Applied Clay Science, 224, 106531. doi:10.1016/j.clay.2022.106531.
[18] Horpibulsk, S., Rachan, R., Suddeepong, A., & Chinkulkijniwat, A. (2011). Strength development in cement admixed Bangkok clay: Laboratory and field investigations. Soils and Foundations, 51(2), 239–251. doi:10.3208/sandf.51.239.
[19] Jiang, N., Wang, C., Wang, Z., Li, B., & Liu, Y. A. (2021). Strength characteristics and microstructure of cement stabilized soft soil admixed with silica fume. Materials, 14(8), 1929. doi:10.3390/ma14081929.
[20] El-Feky, M. S., Badawy, A. H., Youssef, P., & Kohail, M. (2024). Utilizing industrial byproducts for the manufacture of clay-cellulose nanocomposite cements with enhanced sustainability. Scientific Reports, 14(1), 751. doi:10.1038/s41598-023-51130-z.
[21] Suksiripattanapong, C., Krosoongnern, K., Thumrongvut, J., Sukontasukkul, P., Horpibulsuk, S., & Chindaprasirt, P. (2020). Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Studies in Construction Materials, 12, 337. doi:10.1016/j.cscm.2020.e00337.
[22] Nodehi, M., & Taghvaee, V. M. (2022). Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circular Economy and Sustainability, 2(1), 165-196. doi:10.1007/s43615-021-00029-w.
[23] Somna, R., Khamput, P., & Somna, K. (2024). Geopolymer Paving Blocks Made From Fly Ash and Bagasse Ash Under Different Curing Conditions. Chiang Mai Journal of Science, 51(3), 2024041. doi:10.12982/CMJS.2024.041.
[24] Ayeldeen, M., & Kitazume, M. (2017). Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotextiles and Geomembranes, 45(6), 592–602. doi:10.1016/j.geotexmem.2017.05.005.
[25] Mirzababaei, M., Arulrajah, A., & Ouston, M. (2017). Polymers for Stabilization of Soft Clay Soils. Procedia Engineering, 189, 25–32. doi:10.1016/j.proeng.2017.05.005.
[26] Huang, J., Kogbara, R. B., Hariharan, N., Masad, E. A., & Little, D. N. (2021). A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials, 305, 124685. doi:10.1016/j.conbuildmat.2021.124685.
[27] Mirzababaei, M., Yasrobi, S., & Al-Rawas, A. (2009). Effect of polymers on swelling potential of expansive soils. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(3), 111–119. doi:10.1680/grim.2009.162.3.111.
[28] Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Soltani, A., & Khayat, N. (2018). Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotextiles and Geomembranes, 46(5), 646–655. doi:10.1016/j.geotexmem.2018.05.001.
[29] Allahverdi, A., Kianpur, K., & Moghbeli, M. R. (2010). Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste. Iranian Journal of Materials Science and Engineering, 7(1), 1–6.
[30] de Melo Fiori, A. P. S., Camani, P. H., dos Santos Rosa, D., & Carastan, D. J. (2019). Combined effects of clay minerals and polyethylene glycol in the mechanical and water barrier properties of carboxymethylcellulose films. Industrial Crops and Products, 140, 111644. doi:10.1016/j.indcrop.2019.111644.
[31] Tanaka, H., Locat, J., Shibuya, S., Soon, T. T., & Shiwakoti, D. R. (2001). Characterization of Singapore, Bangkok, and Ariake clays. Canadian Geotechnical Journal, 38(2), 378–400. doi:10.1139/t00-106.
[32] Yang, L., Chen, M., Liang, C., Lu, L., Zhao, P., Wu, F., Xu, J., & Huang, Y. (2022). Improvement in the anti-corrosion property of marine concrete using layered double hydroxides and polyvinylpyrrolidone. Applied Clay Science, 216. doi:10.1016/j.clay.2021.106385.
[33] Azzam, W. R. (2014). Behavior of modified clay microstructure using polymer nanocomposites technique. Alexandria Engineering Journal, 53(1), 143–150. doi:10.1016/j.aej.2013.11.010.
[34] Suksiripattanapong, C., Jenpiyapong, K., Tiyasangthong, S., Krittacom, B., Phetchuay, C., & Tabyang, W. (2022). Mechanical and thermal properties of lateritic soil mixed with cement and polymers as a non-bearing masonry unit. Case Studies in Construction Materials, 16, 962. doi:10.1016/j.cscm.2022.e00962.
[35] Subramanian, U. M., Kumar, S. V., Nagiah, N., & Sivagnanam, U. T. (2014). Fabrication of polyvinyl alcohol-polyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(9), 476–485. doi:10.1080/00914037.2013.854216.
[36] Jerome, F. S., Tseng, J. T., & Fan, L. T. (1968). Viscosities of Aqueous Glycol Solutions. Journal of Chemical and Engineering Data, 13(4), 496. doi:10.1021/je60039a010.
[37] Suksiripattanapong, C., Horpibulsuk, S., Chanprasert, P., Sukmak, P., & Arulrajah, A. (2015). Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Construction and Building Materials, 82, 20–30. doi:10.1016/j.conbuildmat.2015.02.040.
[38] Feldstein, M. M. (2001). Peculiarities of glass transition temperature relation to the composition of poly (N-vinyl pyrrolidone) blends with short chain poly (ethylene glycol). Polymer, 42(18), 7719-7726. doi:10.1016/S0032-3861(01)00225-7.
[39] D.O.H. (2007). Manual of Highway Construction. Department of Highways, Bangkok, Thailand.
[40] Yu, Y.-H., Lin, C.-Y., Yeh, J.-M., & Lin, W.-H. Preparation and properties of poly (vinyl alcohol) – clay nanocomposite materials. Polymer, 44, 3553–3560.
[41] Saberian, M., & Li, J. (2018). Investigation of the mechanical properties and carbonation of construction and demolition materials together with rubber. Journal of Cleaner Production, 202, 553–560. doi:10.1016/j.jclepro.2018.08.183.
[42] Teng, C., Qiao, J., Wang, J., Jiang, L., & Zhu, Y. (2016). Hierarchical layered heterogeneous graphene-poly(N-isopropylacrylamide)-clay hydrogels with superior modulus, strength, and toughness. ACS Nano, 10(1), 413–420. doi:10.1021/acsnano.5b05120.
[43] Horpibulsuk, S., Miura, N., & Nagaraj, T. S. (2003). Assessment of strength development in cement-admixed high water content clays with Abrams' law as a basis. Geotechnique, 53(4), 439–444. doi:10.1680/geot.2003.53.4.439.
[44] Wang, Y., Zhou, W., Li, Y., Liang, L., Xie, G., & Peng, Y. (2021). The role of polyvinylpyrrolidone in the selective separation of coal from quartz and kaolinite minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126948. doi:10.1016/j.colsurfa.2021.126948.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
